Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import functools | |
import os | |
import pathlib | |
import sys | |
import tarfile | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import torch | |
sys.path.insert(0, 'face_detection') | |
sys.path.insert(0, 'face_parsing') | |
sys.path.insert(0, 'roi_tanh_warping') | |
from ibug.face_detection import RetinaFacePredictor | |
from ibug.face_parsing.parser import WEIGHT, FaceParser | |
from ibug.face_parsing.utils import label_colormap | |
REPO_URL = 'https://github.com/hhj1897/face_parsing' | |
TITLE = 'hhj1897/face_parsing' | |
DESCRIPTION = f'This is a demo for {REPO_URL}.' | |
ARTICLE = None | |
TOKEN = os.environ['TOKEN'] | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--live', action='store_true') | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
parser.add_argument('--allow-flagging', type=str, default='never') | |
parser.add_argument('--allow-screenshot', action='store_true') | |
return parser.parse_args() | |
def load_sample_images() -> list[pathlib.Path]: | |
image_dir = pathlib.Path('images') | |
if not image_dir.exists(): | |
image_dir.mkdir() | |
dataset_repo = 'hysts/input-images' | |
filenames = ['000.tar', '001.tar'] | |
for name in filenames: | |
path = huggingface_hub.hf_hub_download(dataset_repo, | |
name, | |
repo_type='dataset', | |
use_auth_token=TOKEN) | |
with tarfile.open(path) as f: | |
f.extractall(image_dir.as_posix()) | |
return sorted(image_dir.rglob('*.jpg')) | |
def load_detector(device: torch.device) -> RetinaFacePredictor: | |
model = RetinaFacePredictor( | |
threshold=0.8, | |
device=device, | |
model=RetinaFacePredictor.get_model('mobilenet0.25')) | |
return model | |
def load_model(model_name: str, device: torch.device) -> FaceParser: | |
encoder, decoder, num_classes = model_name.split('-') | |
num_classes = int(num_classes) | |
model = FaceParser(device=device, | |
encoder=encoder, | |
decoder=decoder, | |
num_classes=num_classes) | |
model.num_classes = num_classes | |
return model | |
def predict(image: np.ndarray, model_name: str, max_num_faces: int, | |
detector: RetinaFacePredictor, | |
models: dict[str, FaceParser]) -> np.ndarray: | |
model = models[model_name] | |
colormap = label_colormap(model.num_classes) | |
# RGB -> BGR | |
image = image[:, :, ::-1] | |
faces = detector(image, rgb=False) | |
if len(faces) == 0: | |
raise RuntimeError('No face was found.') | |
faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces][::-1] | |
masks = model.predict_img(image, faces, rgb=False) | |
mask_image = np.zeros_like(image) | |
for mask in masks: | |
temp = colormap[mask] | |
mask_image[temp > 0] = temp[temp > 0] | |
res = image.astype(float) * 0.5 + mask_image[:, :, ::-1] * 0.5 | |
res = np.clip(np.round(res), 0, 255).astype(np.uint8) | |
return res[:, :, ::-1] | |
def main(): | |
gr.close_all() | |
args = parse_args() | |
device = torch.device(args.device) | |
detector = load_detector(device) | |
model_names = list(WEIGHT.keys()) | |
models = {name: load_model(name, device=device) for name in model_names} | |
func = functools.partial(predict, detector=detector, models=models) | |
func = functools.update_wrapper(func, predict) | |
image_paths = load_sample_images() | |
examples = [[path.as_posix(), model_names[1], 10] for path in image_paths] | |
gr.Interface( | |
func, | |
[ | |
gr.inputs.Image(type='numpy', label='Input'), | |
gr.inputs.Radio(model_names, | |
type='value', | |
default=model_names[1], | |
label='Model'), | |
gr.inputs.Slider( | |
1, 20, step=1, default=10, label='Max Number of Faces'), | |
], | |
gr.outputs.Image(type='numpy', label='Output'), | |
examples=examples, | |
title=TITLE, | |
description=DESCRIPTION, | |
article=ARTICLE, | |
theme=args.theme, | |
allow_screenshot=args.allow_screenshot, | |
allow_flagging=args.allow_flagging, | |
live=args.live, | |
).launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |