#!/usr/bin/env python from __future__ import annotations import functools import os import pathlib import sys import tarfile import gradio as gr import huggingface_hub import PIL.Image import torch import torchvision sys.path.insert(0, 'bizarre-pose-estimator') from _util.twodee_v0 import I as ImageWrapper DESCRIPTION = '# [ShuhongChen/bizarre-pose-estimator (tagger)](https://github.com/ShuhongChen/bizarre-pose-estimator)' MODEL_REPO = 'public-data/bizarre-pose-estimator-models' def load_sample_image_paths() -> list[pathlib.Path]: image_dir = pathlib.Path('images') if not image_dir.exists(): dataset_repo = 'hysts/sample-images-TADNE' path = huggingface_hub.hf_hub_download(dataset_repo, 'images.tar.gz', repo_type='dataset') with tarfile.open(path) as f: f.extractall() return sorted(image_dir.glob('*')) def load_model(device: torch.device) -> torch.nn.Module: path = huggingface_hub.hf_hub_download(MODEL_REPO, 'tagger.pth') state_dict = torch.load(path) model = torchvision.models.resnet50(num_classes=1062) model.load_state_dict(state_dict) model.to(device) model.eval() return model def load_labels() -> list[str]: label_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'tags.txt') with open(label_path) as f: labels = [line.strip() for line in f.readlines()] return labels @torch.inference_mode() def predict(image: PIL.Image.Image, score_threshold: float, device: torch.device, model: torch.nn.Module, labels: list[str]) -> dict[str, float]: data = ImageWrapper(image).resize_square(256).alpha_bg( c='w').convert('RGB').tensor() data = data.to(device).unsqueeze(0) preds = model(data)[0] preds = torch.sigmoid(preds) preds = preds.cpu().numpy().astype(float) res = dict() for prob, label in zip(preds.tolist(), labels): if prob < score_threshold: continue res[label] = prob return res image_paths = load_sample_image_paths() examples = [[path.as_posix(), 0.5] for path in image_paths] device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = load_model(device) labels = load_labels() fn = functools.partial(predict, device=device, model=model, labels=labels) with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): image = gr.Image(label='Input', type='pil') threshold = gr.Slider(label='Score Threshold', minimum=0, maximum=1, step=0.05, value=0.5) run_button = gr.Button('Run') with gr.Column(): result = gr.Label(label='Output') inputs = [image, threshold] gr.Examples(examples=examples, inputs=inputs, outputs=result, fn=fn, cache_examples=os.getenv('CACHE_EXAMPLES') == '1') run_button.click(fn=fn, inputs=inputs, outputs=result, api_name='predict') demo.queue(max_size=15).launch()