#!/usr/bin/env python from __future__ import annotations import functools import os import pathlib import sys import tarfile from typing import Callable import gradio as gr import huggingface_hub import numpy as np import PIL.Image import torch import torch.nn as nn import torchvision import torchvision.transforms as T sys.path.insert(0, 'bizarre-pose-estimator') from _util.twodee_v0 import I as ImageWrapper DESCRIPTION = '# [ShuhongChen/bizarre-pose-estimator (segmenter)](https://github.com/ShuhongChen/bizarre-pose-estimator)' def load_sample_image_paths() -> list[pathlib.Path]: image_dir = pathlib.Path('images') if not image_dir.exists(): dataset_repo = 'hysts/sample-images-TADNE' path = huggingface_hub.hf_hub_download(dataset_repo, 'images.tar.gz', repo_type='dataset') with tarfile.open(path) as f: f.extractall() return sorted(image_dir.glob('*')) def load_model( device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]: path = huggingface_hub.hf_hub_download( 'public-data/bizarre-pose-estimator-models', 'segmenter.pth') ckpt = torch.load(path) model = torchvision.models.segmentation.deeplabv3_resnet101() model.classifier = nn.Sequential( torchvision.models.segmentation.deeplabv3.ASPP(2048, [12, 24, 36]), nn.Conv2d(256, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(), nn.Conv2d(64, 16, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(16), nn.LeakyReLU(), ) final_head = nn.Sequential( nn.Conv2d(16 + 3, 16, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(16), nn.LeakyReLU(), nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(8), nn.LeakyReLU(), nn.Conv2d(8, 2, kernel_size=1, stride=1), ) model.load_state_dict(ckpt['model']) final_head.load_state_dict(ckpt['final_head']) model.to(device) model.eval() final_head.to(device) final_head.eval() return model, final_head @torch.inference_mode() def predict(image: PIL.Image.Image, score_threshold: float, transform: Callable, device: torch.device, model: torch.nn.Module, final_head: torch.nn.Module) -> np.ndarray: data = ImageWrapper(image).resize_min(256).convert('RGBA').alpha_bg( 1).convert('RGB').pil() data = torchvision.transforms.functional.to_tensor(data) data = transform(data) data = data.to(device).unsqueeze(0) out = model(data)['out'] out_fin = final_head(torch.cat([ out, data, ], dim=1)) probs = torch.softmax(out_fin, dim=1)[0] probs = probs[1] # foreground probs = PIL.Image.fromarray(probs.cpu().numpy()).resize(image.size) mask = np.asarray(probs).copy() mask[mask < score_threshold] = 0 mask[mask > 0] = 1 mask = mask.astype(bool) res = np.asarray(image).copy() res[~mask] = 255 return res image_paths = load_sample_image_paths() examples = [[path.as_posix(), 0.5] for path in image_paths] device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model, final_head = load_model(device) transform = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) fn = functools.partial(predict, transform=transform, device=device, model=model, final_head=final_head) with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): image = gr.Image(label='Input', type='pil') threshold = gr.Slider(label='Score Threshold', minimum=0, maximum=1, step=0.05, value=0.5) run_button = gr.Button('Run') with gr.Column(): result = gr.Image(label='Masked') inputs = [image, threshold] gr.Examples(examples=examples, inputs=inputs, outputs=result, fn=fn, cache_examples=os.getenv('CACHE_EXAMPLES') == '1') run_button.click(fn=fn, inputs=inputs, outputs=result, api_name='predict') demo.queue(max_size=15).launch()