File size: 5,566 Bytes
af898ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e2c6e
 
 
 
af898ba
e3e2c6e
af898ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3e2c6e
 
 
 
af898ba
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pathlib
import sys
import tarfile
from typing import Callable

import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as T

sys.path.insert(0, 'bizarre-pose-estimator')

from _util.twodee_v0 import I as ImageWrapper

ORIGINAL_REPO_URL = 'https://github.com/ShuhongChen/bizarre-pose-estimator'
TITLE = 'ShuhongChen/bizarre-pose-estimator (segmenter)'
DESCRIPTION = f'A demo for {ORIGINAL_REPO_URL}'
ARTICLE = None

TOKEN = os.environ['TOKEN']
MODEL_REPO = 'hysts/bizarre-pose-estimator-models'
MODEL_FILENAME = 'segmenter.pth'


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--score-slider-step', type=float, default=0.05)
    parser.add_argument('--score-threshold', type=float, default=0.5)
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    return parser.parse_args()


def load_sample_image_paths() -> list[pathlib.Path]:
    image_dir = pathlib.Path('images')
    if not image_dir.exists():
        dataset_repo = 'hysts/sample-images-TADNE'
        path = huggingface_hub.hf_hub_download(dataset_repo,
                                               'images.tar.gz',
                                               repo_type='dataset',
                                               use_auth_token=TOKEN)
        with tarfile.open(path) as f:
            f.extractall()
    return sorted(image_dir.glob('*'))


def load_model(
        device: torch.device) -> tuple[torch.nn.Module, torch.nn.Module]:
    path = huggingface_hub.hf_hub_download(MODEL_REPO,
                                           MODEL_FILENAME,
                                           use_auth_token=TOKEN)
    ckpt = torch.load(path)

    model = torchvision.models.segmentation.deeplabv3_resnet101()
    model.classifier = nn.Sequential(
        torchvision.models.segmentation.deeplabv3.ASPP(2048, [12, 24, 36]),
        nn.Conv2d(256, 64, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(64),
        nn.LeakyReLU(),
        nn.Conv2d(64, 16, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(16),
        nn.LeakyReLU(),
    )
    final_head = nn.Sequential(
        nn.Conv2d(16 + 3, 16, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(16),
        nn.LeakyReLU(),
        nn.Conv2d(16, 8, kernel_size=3, stride=1, padding=1),
        nn.BatchNorm2d(8),
        nn.LeakyReLU(),
        nn.Conv2d(8, 2, kernel_size=1, stride=1),
    )
    model.load_state_dict(ckpt['model'])
    final_head.load_state_dict(ckpt['final_head'])
    model.to(device)
    model.eval()
    final_head.to(device)
    final_head.eval()
    return model, final_head


@torch.inference_mode()
def predict(image: PIL.Image.Image, score_threshold: float,
            transform: Callable, device: torch.device, model: torch.nn.Module,
            final_head: torch.nn.Module) -> np.ndarray:
    data = ImageWrapper(image).resize_min(256).convert('RGBA').alpha_bg(
        1).convert('RGB').pil()
    data = torchvision.transforms.functional.to_tensor(data)
    data = transform(data)
    data = data.to(device).unsqueeze(0)

    out = model(data)['out']
    out_fin = final_head(torch.cat([
        out,
        data,
    ], dim=1))
    probs = torch.softmax(out_fin, dim=1)[0]
    probs = probs[1]  # foreground
    probs = PIL.Image.fromarray(probs.cpu().numpy()).resize(image.size)

    mask = np.asarray(probs)
    mask[mask < score_threshold] = 0
    mask[mask > 0] = 1
    mask = mask.astype(bool)

    res = np.asarray(image)
    res[~mask] = 255
    return res


def main():
    gr.close_all()

    args = parse_args()
    device = torch.device(args.device)

    image_paths = load_sample_image_paths()
    examples = [[path.as_posix(), args.score_threshold]
                for path in image_paths]

    model, final_head = load_model(device)
    transform = T.Normalize(mean=[0.485, 0.456, 0.406],
                            std=[0.229, 0.224, 0.225])

    func = functools.partial(predict,
                             transform=transform,
                             device=device,
                             model=model,
                             final_head=final_head)
    func = functools.update_wrapper(func, predict)

    gr.Interface(
        func,
        [
            gr.inputs.Image(type='pil', label='Input'),
            gr.inputs.Slider(0,
                             1,
                             step=args.score_slider_step,
                             default=args.score_threshold,
                             label='Score Threshold'),
        ],
        gr.outputs.Image(label='Masked'),
        examples=examples,
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()