File size: 4,395 Bytes
db0de3e fb7a74a de3f458 db0de3e de3f458 77f867c 0654980 77f867c db0de3e 0654980 db0de3e 0654980 db0de3e 0654980 db0de3e de3f458 0654980 db0de3e 0654980 db0de3e de3f458 db0de3e 2a13f62 0654980 db0de3e 0654980 fb7a74a db0de3e 0654980 db0de3e 0654980 db0de3e 0654980 db0de3e 637e37a db0de3e 0654980 fb7a74a 0654980 de3f458 2a13f62 0654980 2a13f62 0654980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
#!/usr/bin/env python
import functools
import os
import pathlib
import sys
import tarfile
import urllib.request
from collections.abc import Callable
import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torchvision.transforms as T # noqa: N812
sys.path.insert(0, "anime_face_landmark_detection")
from CFA import CFA
DESCRIPTION = "# [kanosawa/anime_face_landmark_detection](https://github.com/kanosawa/anime_face_landmark_detection)"
NUM_LANDMARK = 24
CROP_SIZE = 128
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path("images")
if not image_dir.exists():
dataset_repo = "hysts/sample-images-TADNE"
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
with tarfile.open(path) as f:
f.extractall() # noqa: S202
return sorted(image_dir.glob("*"))
def load_face_detector() -> cv2.CascadeClassifier:
url = "https://raw.githubusercontent.com/nagadomi/lbpcascade_animeface/master/lbpcascade_animeface.xml"
path = pathlib.Path("lbpcascade_animeface.xml")
if not path.exists():
urllib.request.urlretrieve(url, path.as_posix()) # noqa: S310
return cv2.CascadeClassifier(path.as_posix())
def load_landmark_detector(device: torch.device) -> torch.nn.Module:
path = huggingface_hub.hf_hub_download(
"public-data/anime_face_landmark_detection", "checkpoint_landmark_191116.pth"
)
model = CFA(output_channel_num=NUM_LANDMARK + 1, checkpoint_name=path)
model.to(device)
model.eval()
return model
@torch.inference_mode()
def detect(
image_path: str,
face_detector: cv2.CascadeClassifier,
device: torch.device,
transform: Callable,
landmark_detector: torch.nn.Module,
) -> np.ndarray:
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
preds = face_detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(24, 24))
image_h, image_w = image.shape[:2]
pil_image = PIL.Image.fromarray(image[:, :, ::-1].copy())
res = image.copy()
for x_orig, y_orig, w_orig, h_orig in preds:
x0 = round(max(x_orig - w_orig / 8, 0))
x1 = round(min(x_orig + w_orig * 9 / 8, image_w))
y0 = round(max(y_orig - h_orig / 4, 0))
y1 = y_orig + h_orig
w = x1 - x0
h = y1 - y0
temp = pil_image.crop((x0, y0, x1, y1))
temp = temp.resize((CROP_SIZE, CROP_SIZE), PIL.Image.BICUBIC)
data = transform(temp)
data = data.to(device).unsqueeze(0)
heatmaps = landmark_detector(data)
heatmaps = heatmaps[-1].cpu().numpy()[0]
cv2.rectangle(res, (x0, y0), (x1, y1), (0, 255, 0), 2)
for i in range(NUM_LANDMARK):
heatmap = cv2.resize(heatmaps[i], (CROP_SIZE, CROP_SIZE), interpolation=cv2.INTER_CUBIC)
pty, ptx = np.unravel_index(np.argmax(heatmap), heatmap.shape)
pt_crop = np.round(np.array([ptx * w, pty * h]) / CROP_SIZE).astype(int)
pt = np.array([x0, y0]) + pt_crop
cv2.circle(res, tuple(pt), 2, (0, 0, 255), cv2.FILLED)
return res[:, :, ::-1]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
image_paths = load_sample_image_paths()
examples = [[path.as_posix()] for path in image_paths]
face_detector = load_face_detector()
landmark_detector = load_landmark_detector(device)
transform = T.Compose(
[
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
fn = functools.partial(
detect,
face_detector=face_detector,
device=device,
transform=transform,
landmark_detector=landmark_detector,
)
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input", type="filepath")
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Result")
gr.Examples(
examples=examples,
inputs=image,
outputs=result,
fn=fn,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=fn,
inputs=image,
outputs=result,
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=15).launch()
|