|
|
|
|
|
import os |
|
import pathlib |
|
import shlex |
|
import subprocess |
|
import tarfile |
|
|
|
if os.getenv("SYSTEM") == "spaces": |
|
subprocess.run(shlex.split("pip install git+https://github.com/facebookresearch/[email protected]"), check=True) |
|
subprocess.run(shlex.split("pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87"), check=True) |
|
subprocess.run(shlex.split("pip install Pillow==9.5.0"), check=True) |
|
|
|
import gradio as gr |
|
import huggingface_hub |
|
import numpy as np |
|
import torch |
|
from adet.config import get_cfg |
|
from detectron2.data.detection_utils import read_image |
|
from detectron2.engine.defaults import DefaultPredictor |
|
from detectron2.utils.visualizer import Visualizer |
|
|
|
DESCRIPTION = "# [Yet-Another-Anime-Segmenter](https://github.com/zymk9/Yet-Another-Anime-Segmenter)" |
|
|
|
MODEL_REPO = "public-data/Yet-Another-Anime-Segmenter" |
|
|
|
|
|
def load_sample_image_paths() -> list[pathlib.Path]: |
|
image_dir = pathlib.Path("images") |
|
if not image_dir.exists(): |
|
dataset_repo = "hysts/sample-images-TADNE" |
|
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset") |
|
with tarfile.open(path) as f: |
|
f.extractall() |
|
return sorted(image_dir.glob("*")) |
|
|
|
|
|
def load_model(device: torch.device) -> DefaultPredictor: |
|
config_path = huggingface_hub.hf_hub_download(MODEL_REPO, "SOLOv2.yaml") |
|
model_path = huggingface_hub.hf_hub_download(MODEL_REPO, "SOLOv2.pth") |
|
cfg = get_cfg() |
|
cfg.merge_from_file(config_path) |
|
cfg.MODEL.WEIGHTS = model_path |
|
cfg.MODEL.DEVICE = device.type |
|
cfg.freeze() |
|
return DefaultPredictor(cfg) |
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
model = load_model(device) |
|
|
|
|
|
def predict( |
|
image_path: str, class_score_threshold: float, mask_score_threshold: float |
|
) -> tuple[np.ndarray, np.ndarray]: |
|
model.score_threshold = class_score_threshold |
|
model.mask_threshold = mask_score_threshold |
|
image = read_image(image_path, format="BGR") |
|
preds = model(image) |
|
instances = preds["instances"].to("cpu") |
|
|
|
visualizer = Visualizer(image[:, :, ::-1]) |
|
vis = visualizer.draw_instance_predictions(predictions=instances) |
|
vis = vis.get_image() |
|
|
|
masked = image.copy()[:, :, ::-1] |
|
mask = instances.pred_masks.cpu().numpy().astype(int).max(axis=0) |
|
masked[mask == 0] = 255 |
|
|
|
return vis, masked |
|
|
|
|
|
image_paths = load_sample_image_paths() |
|
examples = [[path, 0.1, 0.5] for path in image_paths] |
|
|
|
|
|
with gr.Blocks(css_paths="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Input", type="filepath") |
|
class_score_threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.1) |
|
mask_score_threshold = gr.Slider(label="Mask Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5) |
|
run_button = gr.Button() |
|
with gr.Column(): |
|
result_instances = gr.Image(label="Instances") |
|
result_masked = gr.Image(label="Masked") |
|
|
|
inputs = [image, class_score_threshold, mask_score_threshold] |
|
outputs = [result_instances, result_masked] |
|
gr.Examples( |
|
examples=examples, |
|
inputs=inputs, |
|
outputs=outputs, |
|
fn=predict, |
|
cache_examples=os.getenv("CACHE_EXAMPLES") == "1", |
|
) |
|
run_button.click( |
|
fn=predict, |
|
inputs=inputs, |
|
outputs=outputs, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=15).launch() |
|
|