|
|
|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import functools |
|
import os |
|
import pathlib |
|
import subprocess |
|
import tarfile |
|
|
|
try: |
|
import detectron2 |
|
except: |
|
command = 'pip install git+https://github.com/facebookresearch/[email protected]' |
|
subprocess.call(command.split()) |
|
|
|
try: |
|
import adet |
|
except: |
|
command = 'pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87' |
|
subprocess.call(command.split()) |
|
|
|
import gradio as gr |
|
import huggingface_hub |
|
import numpy as np |
|
import torch |
|
from adet.config import get_cfg |
|
from detectron2.data.detection_utils import read_image |
|
from detectron2.engine.defaults import DefaultPredictor |
|
from detectron2.utils.visualizer import Visualizer |
|
|
|
TOKEN = os.environ['TOKEN'] |
|
|
|
MODEL_REPO = 'hysts/Yet-Another-Anime-Segmenter' |
|
MODEL_FILENAME = 'SOLOv2.pth' |
|
CONFIG_FILENAME = 'SOLOv2.yaml' |
|
|
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', type=str, default='cpu') |
|
parser.add_argument('--class-score-slider-step', type=float, default=0.05) |
|
parser.add_argument('--class-score-threshold', type=float, default=0.1) |
|
parser.add_argument('--mask-score-slider-step', type=float, default=0.05) |
|
parser.add_argument('--mask-score-threshold', type=float, default=0.5) |
|
parser.add_argument('--theme', type=str) |
|
parser.add_argument('--live', action='store_true') |
|
parser.add_argument('--share', action='store_true') |
|
parser.add_argument('--port', type=int) |
|
parser.add_argument('--disable-queue', |
|
dest='enable_queue', |
|
action='store_false') |
|
parser.add_argument('--allow-flagging', type=str, default='never') |
|
parser.add_argument('--allow-screenshot', action='store_true') |
|
return parser.parse_args() |
|
|
|
|
|
def load_sample_image_paths() -> list[pathlib.Path]: |
|
image_dir = pathlib.Path('images') |
|
if not image_dir.exists(): |
|
dataset_repo = 'hysts/sample-images-TADNE' |
|
path = huggingface_hub.hf_hub_download(dataset_repo, |
|
'images.tar.gz', |
|
repo_type='dataset', |
|
use_auth_token=TOKEN) |
|
with tarfile.open(path) as f: |
|
f.extractall() |
|
return sorted(image_dir.glob('*')) |
|
|
|
|
|
def load_model(device: torch.device) -> DefaultPredictor: |
|
config_path = huggingface_hub.hf_hub_download(MODEL_REPO, |
|
CONFIG_FILENAME, |
|
use_auth_token=TOKEN) |
|
model_path = huggingface_hub.hf_hub_download(MODEL_REPO, |
|
MODEL_FILENAME, |
|
use_auth_token=TOKEN) |
|
cfg = get_cfg() |
|
cfg.merge_from_file(config_path) |
|
cfg.MODEL.WEIGHTS = model_path |
|
cfg.MODEL.DEVICE = device.type |
|
cfg.freeze() |
|
return DefaultPredictor(cfg) |
|
|
|
|
|
def predict(image, class_score_threshold: float, mask_score_threshold: float, |
|
model: DefaultPredictor) -> tuple[np.ndarray, np.ndarray]: |
|
model.score_threshold = class_score_threshold |
|
model.mask_threshold = mask_score_threshold |
|
image = read_image(image.name, format='BGR') |
|
preds = model(image) |
|
instances = preds['instances'].to('cpu') |
|
|
|
visualizer = Visualizer(image[:, :, ::-1]) |
|
vis = visualizer.draw_instance_predictions(predictions=instances) |
|
vis = vis.get_image() |
|
|
|
masked = image.copy()[:, :, ::-1] |
|
mask = instances.pred_masks.cpu().numpy().astype(int).max(axis=0) |
|
masked[mask == 0] = 255 |
|
|
|
return vis, masked |
|
|
|
|
|
def main(): |
|
gr.close_all() |
|
|
|
args = parse_args() |
|
device = torch.device(args.device) |
|
|
|
image_paths = load_sample_image_paths() |
|
examples = [[ |
|
path.as_posix(), args.class_score_threshold, args.mask_score_threshold |
|
] for path in image_paths] |
|
|
|
model = load_model(device) |
|
|
|
func = functools.partial(predict, model=model) |
|
func = functools.update_wrapper(func, predict) |
|
|
|
repo_url = 'https://github.com/zymk9/Yet-Another-Anime-Segmenter' |
|
title = 'zymk9/Yet-Another-Anime-Segmenter' |
|
description = f'A demo for {repo_url}' |
|
article = None |
|
|
|
gr.Interface( |
|
func, |
|
[ |
|
gr.inputs.Image(type='file', label='Input'), |
|
gr.inputs.Slider(0, |
|
1, |
|
step=args.class_score_slider_step, |
|
default=args.class_score_threshold, |
|
label='Class Score Threshold'), |
|
gr.inputs.Slider(0, |
|
1, |
|
step=args.mask_score_slider_step, |
|
default=args.mask_score_threshold, |
|
label='Mask Score Threshold'), |
|
], |
|
[ |
|
gr.outputs.Image(label='Instances'), |
|
gr.outputs.Image(label='Masked'), |
|
], |
|
theme=args.theme, |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
allow_screenshot=args.allow_screenshot, |
|
allow_flagging=args.allow_flagging, |
|
live=args.live, |
|
).launch( |
|
enable_queue=args.enable_queue, |
|
server_port=args.port, |
|
share=args.share, |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|