#!/usr/bin/env python from __future__ import annotations import argparse import functools import os import pickle import sys import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download sys.path.insert(0, 'stylegan3') TITLE = 'StyleGAN2' DESCRIPTION = '''This is an unofficial demo for https://github.com/NVlabs/stylegan3. Expected execution time on Hugging Face Spaces: 4s ''' SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/StyleGAN2/resolve/main/samples' ARTICLE = f'''## Generated images - truncation: 0.7 ### CIFAR-10 - size: 32x32 - class index: 0-9 - seed: 0-9 ![CIFAR-10 samples]({SAMPLE_IMAGE_DIR}/cifar10.jpg) ### AFHQ-Cat - size: 512x512 - seed: 0-99 ![AFHQ-Cat samples]({SAMPLE_IMAGE_DIR}/afhq-cat.jpg) ### AFHQ-Dog - size: 512x512 - seed: 0-99 ![AFHQ-Dog samples]({SAMPLE_IMAGE_DIR}/afhq-dog.jpg) ### AFHQ-Wild - size: 512x512 - seed: 0-99 ![AFHQ-Wild samples]({SAMPLE_IMAGE_DIR}/afhq-wild.jpg) ### AFHQv2 - size: 512x512 - seed: 0-99 ![AFHQv2 samples]({SAMPLE_IMAGE_DIR}/afhqv2.jpg) ### LSUN-Dog - size: 256x256 - seed: 0-99 ![LSUN-Dog samples]({SAMPLE_IMAGE_DIR}/lsun-dog.jpg) ### BreCaHAD - size: 512x512 - seed: 0-99 ![BreCaHAD samples]({SAMPLE_IMAGE_DIR}/brecahad.jpg) ### CelebA-HQ - size: 256x256 - seed: 0-99 ![CelebA-HQ samples]({SAMPLE_IMAGE_DIR}/celebahq.jpg) ### FFHQ - size: 1024x1024 - seed: 0-99 ![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg) ### FFHQ-U - size: 1024x1024 - seed: 0-99 ![FFHQ-U samples]({SAMPLE_IMAGE_DIR}/ffhq-u.jpg) ### MetFaces - size: 1024x1024 - seed: 0-99 ![MetFaces samples]({SAMPLE_IMAGE_DIR}/metfaces.jpg) ### MetFaces-U - size: 1024x1024 - seed: 0-99 ![MetFaces-U samples]({SAMPLE_IMAGE_DIR}/metfaces-u.jpg)
visitor badge
''' TOKEN = os.environ['TOKEN'] def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--live', action='store_true') parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') parser.add_argument('--allow-flagging', type=str, default='never') return parser.parse_args() def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: return torch.from_numpy(np.random.RandomState(seed).randn( 1, z_dim)).to(device).float() @torch.inference_mode() def generate_image(model_name: str, class_index: int, seed: int, truncation_psi: float, model_dict: dict[str, nn.Module], device: torch.device) -> np.ndarray: model = model_dict[model_name] seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) z = generate_z(model.z_dim, seed, device) label = torch.zeros([1, model.c_dim], device=device) class_index = round(class_index) class_index = min(max(0, class_index), model.c_dim - 1) class_index = torch.tensor(class_index, dtype=torch.long) if class_index >= 0: label[:, class_index] = 1 out = model(z, label, truncation_psi=truncation_psi) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return out[0].cpu().numpy() def load_model(file_name: str, device: torch.device) -> nn.Module: path = hf_hub_download('hysts/StyleGAN2', f'models/{file_name}', use_auth_token=TOKEN) with open(path, 'rb') as f: model = pickle.load(f)['G_ema'] model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) model(z, label) return model def main(): args = parse_args() device = torch.device(args.device) model_names = { 'AFHQ-Cat-512': 'stylegan2-afhqcat-512x512.pkl', 'AFHQ-Dog-512': 'stylegan2-afhqdog-512x512.pkl', 'AFHQv2-512': 'stylegan2-afhqv2-512x512.pkl', 'AFHQ-Wild-512': 'stylegan2-afhqwild-512x512.pkl', 'BreCaHAD-512': 'stylegan2-brecahad-512x512.pkl', 'CelebA-HQ-256': 'stylegan2-celebahq-256x256.pkl', 'CIFAR-10': 'stylegan2-cifar10-32x32.pkl', 'FFHQ-256': 'stylegan2-ffhq-256x256.pkl', 'FFHQ-512': 'stylegan2-ffhq-512x512.pkl', 'FFHQ-1024': 'stylegan2-ffhq-1024x1024.pkl', 'FFHQ-U-256': 'stylegan2-ffhqu-256x256.pkl', 'FFHQ-U-1024': 'stylegan2-ffhqu-1024x1024.pkl', 'LSUN-Dog-256': 'stylegan2-lsundog-256x256.pkl', 'MetFaces-1024': 'stylegan2-metfaces-1024x1024.pkl', 'MetFaces-U-1024': 'stylegan2-metfacesu-1024x1024.pkl', } model_dict = { name: load_model(file_name, device) for name, file_name in model_names.items() } func = functools.partial(generate_image, model_dict=model_dict, device=device) func = functools.update_wrapper(func, generate_image) gr.Interface( func, [ gr.inputs.Radio(list(model_names.keys()), type='value', default='FFHQ-1024', label='Model'), gr.inputs.Number(default=0, label='Class index'), gr.inputs.Number(default=0, label='Seed'), gr.inputs.Slider( 0, 2, step=0.05, default=0.7, label='Truncation psi'), ], gr.outputs.Image(type='numpy', label='Output'), title=TITLE, description=DESCRIPTION, article=ARTICLE, theme=args.theme, allow_flagging=args.allow_flagging, live=args.live, ).launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()