StyleGAN2 / app.py
hysts's picture
hysts HF Staff
Update description
ca98530
raw
history blame
6.2 kB
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
sys.path.insert(0, 'stylegan3')
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
TITLE = 'StyleGAN2'
DESCRIPTION = '''This is an unofficial demo for https://github.com/NVlabs/stylegan3.
Expected execution time on Hugging Face Spaces: 4s
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/StyleGAN2/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
### CIFAR-10
- size: 32x32
- class index: 0-9
- seed: 0-9
![CIFAR-10 samples]({SAMPLE_IMAGE_DIR}/cifar10.jpg)
### AFHQ-Cat
- size: 512x512
- seed: 0-99
![AFHQ-Cat samples]({SAMPLE_IMAGE_DIR}/afhq-cat.jpg)
### AFHQ-Dog
- size: 512x512
- seed: 0-99
![AFHQ-Dog samples]({SAMPLE_IMAGE_DIR}/afhq-dog.jpg)
### AFHQ-Wild
- size: 512x512
- seed: 0-99
![AFHQ-Wild samples]({SAMPLE_IMAGE_DIR}/afhq-wild.jpg)
### AFHQv2
- size: 512x512
- seed: 0-99
![AFHQv2 samples]({SAMPLE_IMAGE_DIR}/afhqv2.jpg)
### LSUN-Dog
- size: 256x256
- seed: 0-99
![LSUN-Dog samples]({SAMPLE_IMAGE_DIR}/lsun-dog.jpg)
### BreCaHAD
- size: 512x512
- seed: 0-99
![BreCaHAD samples]({SAMPLE_IMAGE_DIR}/brecahad.jpg)
### CelebA-HQ
- size: 256x256
- seed: 0-99
![CelebA-HQ samples]({SAMPLE_IMAGE_DIR}/celebahq.jpg)
### FFHQ
- size: 1024x1024
- seed: 0-99
![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg)
### FFHQ-U
- size: 1024x1024
- seed: 0-99
![FFHQ-U samples]({SAMPLE_IMAGE_DIR}/ffhq-u.jpg)
### MetFaces
- size: 1024x1024
- seed: 0-99
![MetFaces samples]({SAMPLE_IMAGE_DIR}/metfaces.jpg)
### MetFaces-U
- size: 1024x1024
- seed: 0-99
![MetFaces-U samples]({SAMPLE_IMAGE_DIR}/metfaces-u.jpg)
<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.stylegan2" alt="visitor badge"/></center>
'''
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_image(model_name: str, class_index: int, seed: int,
truncation_psi: float, model_dict: dict[str, nn.Module],
device: torch.device) -> np.ndarray:
model = model_dict[model_name]
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.z_dim, seed, device)
label = torch.zeros([1, model.c_dim], device=device)
class_index = round(class_index)
class_index = min(max(0, class_index), model.c_dim - 1)
class_index = torch.tensor(class_index, dtype=torch.long)
if class_index >= 0:
label[:, class_index] = 1
out = model(z, label, truncation_psi=truncation_psi)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
def load_model(file_name: str, device: torch.device) -> nn.Module:
path = hf_hub_download('hysts/StyleGAN2',
f'models/{file_name}',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = pickle.load(f)['G_ema']
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(device)
label = torch.zeros([1, model.c_dim], device=device)
model(z, label)
return model
def main():
gr.close_all()
args = parse_args()
device = torch.device(args.device)
model_names = {
'AFHQ-Cat-512': 'stylegan2-afhqcat-512x512.pkl',
'AFHQ-Dog-512': 'stylegan2-afhqdog-512x512.pkl',
'AFHQv2-512': 'stylegan2-afhqv2-512x512.pkl',
'AFHQ-Wild-512': 'stylegan2-afhqwild-512x512.pkl',
'BreCaHAD-512': 'stylegan2-brecahad-512x512.pkl',
'CelebA-HQ-256': 'stylegan2-celebahq-256x256.pkl',
'CIFAR-10': 'stylegan2-cifar10-32x32.pkl',
'FFHQ-256': 'stylegan2-ffhq-256x256.pkl',
'FFHQ-512': 'stylegan2-ffhq-512x512.pkl',
'FFHQ-1024': 'stylegan2-ffhq-1024x1024.pkl',
'FFHQ-U-256': 'stylegan2-ffhqu-256x256.pkl',
'FFHQ-U-1024': 'stylegan2-ffhqu-1024x1024.pkl',
'LSUN-Dog-256': 'stylegan2-lsundog-256x256.pkl',
'MetFaces-1024': 'stylegan2-metfaces-1024x1024.pkl',
'MetFaces-U-1024': 'stylegan2-metfacesu-1024x1024.pkl',
}
model_dict = {
name: load_model(file_name, device)
for name, file_name in model_names.items()
}
func = functools.partial(generate_image,
model_dict=model_dict,
device=device)
func = functools.update_wrapper(func, generate_image)
gr.Interface(
func,
[
gr.inputs.Radio(list(model_names.keys()),
type='value',
default='FFHQ-1024',
label='Model'),
gr.inputs.Number(default=0, label='Class index'),
gr.inputs.Number(default=0, label='Seed'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi'),
],
gr.outputs.Image(type='numpy', label='Output'),
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()