|
from __future__ import annotations |
|
|
|
import os |
|
import pathlib |
|
import pickle |
|
import sys |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import hf_hub_download |
|
|
|
current_dir = pathlib.Path(__file__).parent |
|
submodule_dir = current_dir / 'stylegan3' |
|
sys.path.insert(0, submodule_dir.as_posix()) |
|
|
|
HF_TOKEN = os.environ['HF_TOKEN'] |
|
|
|
|
|
class Model: |
|
MODEL_NAME_DICT = { |
|
'AFHQ-Cat-512': 'stylegan2-afhqcat-512x512.pkl', |
|
'AFHQ-Dog-512': 'stylegan2-afhqdog-512x512.pkl', |
|
'AFHQv2-512': 'stylegan2-afhqv2-512x512.pkl', |
|
'AFHQ-Wild-512': 'stylegan2-afhqwild-512x512.pkl', |
|
'BreCaHAD-512': 'stylegan2-brecahad-512x512.pkl', |
|
'CelebA-HQ-256': 'stylegan2-celebahq-256x256.pkl', |
|
'CIFAR-10': 'stylegan2-cifar10-32x32.pkl', |
|
'FFHQ-256': 'stylegan2-ffhq-256x256.pkl', |
|
'FFHQ-512': 'stylegan2-ffhq-512x512.pkl', |
|
'FFHQ-1024': 'stylegan2-ffhq-1024x1024.pkl', |
|
'FFHQ-U-256': 'stylegan2-ffhqu-256x256.pkl', |
|
'FFHQ-U-1024': 'stylegan2-ffhqu-1024x1024.pkl', |
|
'LSUN-Dog-256': 'stylegan2-lsundog-256x256.pkl', |
|
'MetFaces-1024': 'stylegan2-metfaces-1024x1024.pkl', |
|
'MetFaces-U-1024': 'stylegan2-metfacesu-1024x1024.pkl', |
|
} |
|
|
|
def __init__(self, device: str | torch.device): |
|
self.device = torch.device(device) |
|
self._download_all_models() |
|
self.model_name = 'FFHQ-1024' |
|
self.model = self._load_model(self.model_name) |
|
|
|
def _load_model(self, model_name: str) -> nn.Module: |
|
file_name = self.MODEL_NAME_DICT[model_name] |
|
path = hf_hub_download('hysts/StyleGAN2', |
|
f'models/{file_name}', |
|
use_auth_token=HF_TOKEN) |
|
with open(path, 'rb') as f: |
|
model = pickle.load(f)['G_ema'] |
|
model.eval() |
|
model.to(self.device) |
|
return model |
|
|
|
def set_model(self, model_name: str) -> None: |
|
if model_name == self.model_name: |
|
return |
|
self.model_name = model_name |
|
self.model = self._load_model(model_name) |
|
|
|
def _download_all_models(self): |
|
for name in self.MODEL_NAME_DICT.keys(): |
|
self._load_model(name) |
|
|
|
def generate_z(self, seed: int) -> torch.Tensor: |
|
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) |
|
z = np.random.RandomState(seed).randn(1, self.model.z_dim) |
|
return torch.from_numpy(z).float().to(self.device) |
|
|
|
def postprocess(self, tensor: torch.Tensor) -> np.ndarray: |
|
tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to( |
|
torch.uint8) |
|
return tensor.cpu().numpy() |
|
|
|
def make_label_tensor(self, class_index: int) -> torch.Tensor: |
|
class_index = round(class_index) |
|
class_index = min(max(0, class_index), self.model.c_dim - 1) |
|
class_index = torch.tensor(class_index, dtype=torch.long) |
|
|
|
label = torch.zeros([1, self.model.c_dim], device=self.device) |
|
if class_index >= 0: |
|
label[:, class_index] = 1 |
|
return label |
|
|
|
@torch.inference_mode() |
|
def generate(self, z: torch.Tensor, label: torch.Tensor, |
|
truncation_psi: float) -> torch.Tensor: |
|
return self.model(z, label, truncation_psi=truncation_psi) |
|
|
|
def generate_image(self, seed: int, truncation_psi: float, |
|
class_index: int) -> np.ndarray: |
|
z = self.generate_z(seed) |
|
label = self.make_label_tensor(class_index) |
|
|
|
out = self.generate(z, label, truncation_psi) |
|
out = self.postprocess(out) |
|
return out[0] |
|
|
|
def set_model_and_generate_image(self, model_name: str, seed: int, |
|
truncation_psi: float, |
|
class_index: int) -> np.ndarray: |
|
self.set_model(model_name) |
|
return self.generate_image(seed, truncation_psi, class_index) |
|
|