File size: 6,066 Bytes
69ec5d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb5df6e
 
69ec5d5
ca98530
 
 
 
69ec5d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca98530
 
69ec5d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pickle
import sys

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

sys.path.insert(0, 'stylegan3')

TITLE = 'StyleGAN2'
DESCRIPTION = '''This is an unofficial demo for https://github.com/NVlabs/stylegan3.

Expected execution time on Hugging Face Spaces: 4s
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/StyleGAN2/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
### CIFAR-10
- size: 32x32
- class index: 0-9
- seed: 0-9
![CIFAR-10 samples]({SAMPLE_IMAGE_DIR}/cifar10.jpg)
### AFHQ-Cat
- size: 512x512
- seed: 0-99
![AFHQ-Cat samples]({SAMPLE_IMAGE_DIR}/afhq-cat.jpg)
### AFHQ-Dog
- size: 512x512
- seed: 0-99
![AFHQ-Dog samples]({SAMPLE_IMAGE_DIR}/afhq-dog.jpg)
### AFHQ-Wild
- size: 512x512
- seed: 0-99
![AFHQ-Wild samples]({SAMPLE_IMAGE_DIR}/afhq-wild.jpg)
### AFHQv2
- size: 512x512
- seed: 0-99
![AFHQv2 samples]({SAMPLE_IMAGE_DIR}/afhqv2.jpg)
### LSUN-Dog
- size: 256x256
- seed: 0-99
![LSUN-Dog samples]({SAMPLE_IMAGE_DIR}/lsun-dog.jpg)
### BreCaHAD
- size: 512x512
- seed: 0-99
![BreCaHAD samples]({SAMPLE_IMAGE_DIR}/brecahad.jpg)
### CelebA-HQ
- size: 256x256
- seed: 0-99
![CelebA-HQ samples]({SAMPLE_IMAGE_DIR}/celebahq.jpg)
### FFHQ
- size: 1024x1024
- seed: 0-99
![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg)
### FFHQ-U
- size: 1024x1024
- seed: 0-99
![FFHQ-U samples]({SAMPLE_IMAGE_DIR}/ffhq-u.jpg)
### MetFaces
- size: 1024x1024
- seed: 0-99
![MetFaces samples]({SAMPLE_IMAGE_DIR}/metfaces.jpg)
### MetFaces-U
- size: 1024x1024
- seed: 0-99
![MetFaces-U samples]({SAMPLE_IMAGE_DIR}/metfaces-u.jpg)

<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.stylegan2" alt="visitor badge"/></center>
'''

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    return parser.parse_args()


def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
    return torch.from_numpy(np.random.RandomState(seed).randn(
        1, z_dim)).to(device).float()


@torch.inference_mode()
def generate_image(model_name: str, class_index: int, seed: int,
                   truncation_psi: float, model_dict: dict[str, nn.Module],
                   device: torch.device) -> np.ndarray:
    model = model_dict[model_name]
    seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))

    z = generate_z(model.z_dim, seed, device)
    label = torch.zeros([1, model.c_dim], device=device)
    class_index = round(class_index)
    class_index = min(max(0, class_index), model.c_dim - 1)
    class_index = torch.tensor(class_index, dtype=torch.long)
    if class_index >= 0:
        label[:, class_index] = 1

    out = model(z, label, truncation_psi=truncation_psi)
    out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
    return out[0].cpu().numpy()


def load_model(file_name: str, device: torch.device) -> nn.Module:
    path = hf_hub_download('hysts/StyleGAN2',
                           f'models/{file_name}',
                           use_auth_token=TOKEN)
    with open(path, 'rb') as f:
        model = pickle.load(f)['G_ema']
    model.eval()
    model.to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.z_dim)).to(device)
        label = torch.zeros([1, model.c_dim], device=device)
        model(z, label)
    return model


def main():
    args = parse_args()
    device = torch.device(args.device)

    model_names = {
        'AFHQ-Cat-512': 'stylegan2-afhqcat-512x512.pkl',
        'AFHQ-Dog-512': 'stylegan2-afhqdog-512x512.pkl',
        'AFHQv2-512': 'stylegan2-afhqv2-512x512.pkl',
        'AFHQ-Wild-512': 'stylegan2-afhqwild-512x512.pkl',
        'BreCaHAD-512': 'stylegan2-brecahad-512x512.pkl',
        'CelebA-HQ-256': 'stylegan2-celebahq-256x256.pkl',
        'CIFAR-10': 'stylegan2-cifar10-32x32.pkl',
        'FFHQ-256': 'stylegan2-ffhq-256x256.pkl',
        'FFHQ-512': 'stylegan2-ffhq-512x512.pkl',
        'FFHQ-1024': 'stylegan2-ffhq-1024x1024.pkl',
        'FFHQ-U-256': 'stylegan2-ffhqu-256x256.pkl',
        'FFHQ-U-1024': 'stylegan2-ffhqu-1024x1024.pkl',
        'LSUN-Dog-256': 'stylegan2-lsundog-256x256.pkl',
        'MetFaces-1024': 'stylegan2-metfaces-1024x1024.pkl',
        'MetFaces-U-1024': 'stylegan2-metfacesu-1024x1024.pkl',
    }

    model_dict = {
        name: load_model(file_name, device)
        for name, file_name in model_names.items()
    }

    func = functools.partial(generate_image,
                             model_dict=model_dict,
                             device=device)
    func = functools.update_wrapper(func, generate_image)

    gr.Interface(
        func,
        [
            gr.inputs.Radio(list(model_names.keys()),
                            type='value',
                            default='FFHQ-1024',
                            label='Model'),
            gr.inputs.Number(default=0, label='Class index'),
            gr.inputs.Number(default=0, label='Seed'),
            gr.inputs.Slider(
                0, 2, step=0.05, default=0.7, label='Truncation psi'),
        ],
        gr.outputs.Image(type='numpy', label='Output'),
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()