File size: 6,066 Bytes
69ec5d5 bb5df6e 69ec5d5 ca98530 69ec5d5 ca98530 69ec5d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pickle
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
sys.path.insert(0, 'stylegan3')
TITLE = 'StyleGAN2'
DESCRIPTION = '''This is an unofficial demo for https://github.com/NVlabs/stylegan3.
Expected execution time on Hugging Face Spaces: 4s
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/StyleGAN2/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
### CIFAR-10
- size: 32x32
- class index: 0-9
- seed: 0-9

### AFHQ-Cat
- size: 512x512
- seed: 0-99

### AFHQ-Dog
- size: 512x512
- seed: 0-99

### AFHQ-Wild
- size: 512x512
- seed: 0-99

### AFHQv2
- size: 512x512
- seed: 0-99

### LSUN-Dog
- size: 256x256
- seed: 0-99

### BreCaHAD
- size: 512x512
- seed: 0-99

### CelebA-HQ
- size: 256x256
- seed: 0-99

### FFHQ
- size: 1024x1024
- seed: 0-99

### FFHQ-U
- size: 1024x1024
- seed: 0-99

### MetFaces
- size: 1024x1024
- seed: 0-99

### MetFaces-U
- size: 1024x1024
- seed: 0-99

<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.stylegan2" alt="visitor badge"/></center>
'''
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_image(model_name: str, class_index: int, seed: int,
truncation_psi: float, model_dict: dict[str, nn.Module],
device: torch.device) -> np.ndarray:
model = model_dict[model_name]
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.z_dim, seed, device)
label = torch.zeros([1, model.c_dim], device=device)
class_index = round(class_index)
class_index = min(max(0, class_index), model.c_dim - 1)
class_index = torch.tensor(class_index, dtype=torch.long)
if class_index >= 0:
label[:, class_index] = 1
out = model(z, label, truncation_psi=truncation_psi)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
def load_model(file_name: str, device: torch.device) -> nn.Module:
path = hf_hub_download('hysts/StyleGAN2',
f'models/{file_name}',
use_auth_token=TOKEN)
with open(path, 'rb') as f:
model = pickle.load(f)['G_ema']
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.z_dim)).to(device)
label = torch.zeros([1, model.c_dim], device=device)
model(z, label)
return model
def main():
args = parse_args()
device = torch.device(args.device)
model_names = {
'AFHQ-Cat-512': 'stylegan2-afhqcat-512x512.pkl',
'AFHQ-Dog-512': 'stylegan2-afhqdog-512x512.pkl',
'AFHQv2-512': 'stylegan2-afhqv2-512x512.pkl',
'AFHQ-Wild-512': 'stylegan2-afhqwild-512x512.pkl',
'BreCaHAD-512': 'stylegan2-brecahad-512x512.pkl',
'CelebA-HQ-256': 'stylegan2-celebahq-256x256.pkl',
'CIFAR-10': 'stylegan2-cifar10-32x32.pkl',
'FFHQ-256': 'stylegan2-ffhq-256x256.pkl',
'FFHQ-512': 'stylegan2-ffhq-512x512.pkl',
'FFHQ-1024': 'stylegan2-ffhq-1024x1024.pkl',
'FFHQ-U-256': 'stylegan2-ffhqu-256x256.pkl',
'FFHQ-U-1024': 'stylegan2-ffhqu-1024x1024.pkl',
'LSUN-Dog-256': 'stylegan2-lsundog-256x256.pkl',
'MetFaces-1024': 'stylegan2-metfaces-1024x1024.pkl',
'MetFaces-U-1024': 'stylegan2-metfacesu-1024x1024.pkl',
}
model_dict = {
name: load_model(file_name, device)
for name, file_name in model_names.items()
}
func = functools.partial(generate_image,
model_dict=model_dict,
device=device)
func = functools.update_wrapper(func, generate_image)
gr.Interface(
func,
[
gr.inputs.Radio(list(model_names.keys()),
type='value',
default='FFHQ-1024',
label='Model'),
gr.inputs.Number(default=0, label='Class index'),
gr.inputs.Number(default=0, label='Seed'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi'),
],
gr.outputs.Image(type='numpy', label='Output'),
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|