File size: 5,010 Bytes
ddde5ae
 
 
 
9d74818
ddde5ae
db51ee5
9d74818
 
ddde5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d74818
ddde5ae
 
 
dbc9203
ddde5ae
 
 
 
 
 
 
 
 
 
 
dbc9203
ddde5ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import random
import time

from datasets import load_dataset
from openai import OpenAI
import pandas as pd
import streamlit as st

st.set_page_config(layout="wide")

CONGRESS_GOV_TYPE_MAP = {
    "hconres": "house-concurrent-resolution",
    "hjres": "house-joint-resolution",
    "hr": "house-bill",
    "hres": "house-resolution",
    "s": "senate-bill",
    "sconres": "senate-concurrent-resolution",
    "sjres": "senate-joint-resolution",
    "sres": "senate-resolution",
}


@st.cache_data(show_spinner="Fetching HF data from Hub ...")
def get_data():
    dsd = load_dataset("hyperdemocracy/us-congress", "unified_v1")
    df = pd.concat([ds.to_pandas() for ds in dsd.values()])
    df["text"] = df["textversions"].apply(lambda x: x[0]["text_v1"] if len(x) > 0 else "")
    df = df[df["text"].str.len() > 0]
    df1 = df[df["legis_id"]=="118-s-3207"]
    return pd.concat([df1, df.sample(n=100)])


def escape_markdown(text):
    MD_SPECIAL_CHARS = "\`*_{}[]()#+-.!$"
    for char in MD_SPECIAL_CHARS:
        text = text.replace(char, "\\"+char)
    return text


def get_sponsor_url(bioguide_id):
    return f"https://bioguide.congress.gov/search/bio/{bioguide_id}"


def get_congress_gov_url(congress_num, legis_type, legis_num):
    lt = CONGRESS_GOV_TYPE_MAP[legis_type]
    return f"https://www.congress.gov/bill/{congress_num}th-congress/{lt}/{legis_num}"


def show_bill(bdict):
    bill_url = get_congress_gov_url(
        bdict["congress_num"],
        bdict["legis_type"],
        bdict["legis_num"],
    )
    sponsor_url = get_sponsor_url(
        bdict["metadata"]["sponsors"][0]["bioguide_id"]
    )
    st.header("Metadata")
    st.write("**Bill ID**: [{}]({})".format(bdict["legis_id"], bill_url))
    st.write("**Sponsor**: [{}]({})".format(bdict["metadata"]["sponsors"][0]["full_name"], sponsor_url))
    st.write("**Title**: {}".format(bdict["metadata"]["title"]))
    st.write("**Introduced**: {}".format(bdict["metadata"]["introduced_date"]))
    st.write("**Policy Area**: {}".format(bdict["metadata"]["policy_area"]))
    st.write("**Subjects**: {}".format(bdict["metadata"]["subjects"]))
    st.write("**Character Count**: {}".format(len(bdict["text"])))
    st.write("**Estimated Tokens**: {}".format(len(bdict["text"])/4))

    st.header("Summary")
    if len(bdict["metadata"]["summaries"]) > 0:
        st.write(bdict["metadata"]["summaries"][0])
#        st.markdown(bdict["metadata"]["summaries"][0]["text"], unsafe_allow_html=True)
    else:
        st.write("Not Available")

    st.header("Text")
    st.markdown(escape_markdown(bdict["text"]))





if "messages" not in st.session_state:
    st.session_state["messages"] = []
if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-3.5-turbo-0125"
if "openai_api_key" not in st.session_state:
    st.session_state["openai_api_key"] = None


df = get_data()


with st.sidebar:

    st.header("Configuration")

    openai_api_key = st.text_input(
        label = "OpenAI API Key:",
        help="Required for OpenAI Models",
        type="password",
        key="openai_api_key",
    )

    MODELS = ["gpt-3.5-turbo-0125", "gpt-4-0125-preview"]
    st.selectbox("Model Name", MODELS, key="openai_model")

    LEGIS_IDS = df["legis_id"].to_list()
    st.selectbox("Legis ID", LEGIS_IDS, key="legis_id")
    bdict = df[df["legis_id"] == st.session_state["legis_id"]].iloc[0].to_dict()

    if st.button("Clear Messages"):
        st.session_state["messages"] = []

    st.header("Debug")

    with st.expander("Show Messages"):
        st.write(st.session_state["messages"])

    with st.expander("Show Bill Dictionary"):
        st.write(bdict)


system_message = {
    "role": "system",
    "content": "You are a helpful legislative question answering assistant. Use the following legislative text to help answer user questions.\n\n---" + bdict["text"],
}


with st.expander("Show Bill Details"):
    with st.container(height=600):
        show_bill(bdict)


for message in st.session_state["messages"]:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


if prompt := st.chat_input("How can I help you understand this bill?"):

    if st.session_state["openai_api_key"] is None:
        st.warning("Enter API key to chat")
        st.stop()
    else:
        client = OpenAI(api_key=openai_api_key)

    with st.chat_message("user"):
        st.markdown(prompt)
    st.session_state["messages"].append({"role": "user", "content": prompt})

    with st.chat_message("assistant"):
        stream = client.chat.completions.create(
            model=st.session_state["openai_model"],
            messages=[system_message] + [
                {"role": msg["role"], "content": msg["content"]}
                for msg in st.session_state.messages
            ],
            temperature=0.0,
            stream=True,
        )
        response = st.write_stream(stream)

    st.session_state["messages"].append({"role": "assistant", "content": response})