Spaces:
Build error
Build error
init
Browse files
app.py
CHANGED
|
@@ -2,10 +2,128 @@ import os
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def process(im):
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
title = "U-2-Net"
|
| 11 |
description = "Gradio demo for U-2-Net, https://github.com/xuebinqin/U-2-Net"
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
+
import sys
|
| 6 |
+
sys.path.insert(0, 'U-2-Net')
|
| 7 |
+
|
| 8 |
+
from skimage import io, transform
|
| 9 |
+
import torch
|
| 10 |
+
import torchvision
|
| 11 |
+
from torch.autograd import Variable
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
from torch.utils.data import Dataset, DataLoader
|
| 15 |
+
from torchvision import transforms#, utils
|
| 16 |
+
# import torch.optim as optim
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
from PIL import Image
|
| 20 |
+
import glob
|
| 21 |
+
|
| 22 |
+
from data_loader import RescaleT
|
| 23 |
+
from data_loader import ToTensor
|
| 24 |
+
from data_loader import ToTensorLab
|
| 25 |
+
from data_loader import SalObjDataset
|
| 26 |
+
|
| 27 |
+
from model import U2NET # full size version 173.6 MB
|
| 28 |
+
from model import U2NETP # small version u2net 4.7 MB
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# normalize the predicted SOD probability map
|
| 32 |
+
def normPRED(d):
|
| 33 |
+
ma = torch.max(d)
|
| 34 |
+
mi = torch.min(d)
|
| 35 |
+
|
| 36 |
+
dn = (d-mi)/(ma-mi)
|
| 37 |
+
|
| 38 |
+
return dn
|
| 39 |
+
def save_output(image_name,pred,d_dir):
|
| 40 |
+
predict = pred
|
| 41 |
+
predict = predict.squeeze()
|
| 42 |
+
predict_np = predict.cpu().data.numpy()
|
| 43 |
+
|
| 44 |
+
im = Image.fromarray(predict_np*255).convert('RGB')
|
| 45 |
+
img_name = image_name.split(os.sep)[-1]
|
| 46 |
+
image = io.imread(image_name)
|
| 47 |
+
imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR)
|
| 48 |
+
|
| 49 |
+
pb_np = np.array(imo)
|
| 50 |
+
|
| 51 |
+
aaa = img_name.split(".")
|
| 52 |
+
bbb = aaa[0:-1]
|
| 53 |
+
imidx = bbb[0]
|
| 54 |
+
for i in range(1,len(bbb)):
|
| 55 |
+
imidx = imidx + "." + bbb[i]
|
| 56 |
+
|
| 57 |
+
imo.save(d_dir+'/'+imidx+'.png')
|
| 58 |
+
return d_dir+'/'+imidx+'.png'
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# --------- 1. get image path and name ---------
|
| 62 |
+
model_name='u2net_portrait'#u2netp
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
image_dir = 'portrait_im'
|
| 66 |
+
prediction_dir = 'portrait_results'
|
| 67 |
+
if(not os.path.exists(prediction_dir)):
|
| 68 |
+
os.mkdir(prediction_dir)
|
| 69 |
+
|
| 70 |
+
model_dir = os.path.jos.path.join(os.path.abspath(os.path.dirname(__file__)), 'U-2-Net/saved_models/u2net_portrait/u2net_portrait.pth')
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
# --------- 3. model define ---------
|
| 74 |
+
|
| 75 |
+
print("...load U2NET---173.6 MB")
|
| 76 |
+
net = U2NET(3,1)
|
| 77 |
+
|
| 78 |
+
net.load_state_dict(torch.load(model_dir))
|
| 79 |
+
# if torch.cuda.is_available():
|
| 80 |
+
# net.cuda()
|
| 81 |
+
net.eval()
|
| 82 |
+
|
| 83 |
|
| 84 |
def process(im):
|
| 85 |
+
img_name_list = glob.glob(im.name)
|
| 86 |
+
print("Number of images: ", len(img_name_list))
|
| 87 |
+
# --------- 2. dataloader ---------
|
| 88 |
+
# 1. dataloader
|
| 89 |
+
test_salobj_dataset = SalObjDataset(img_name_list=img_name_list,
|
| 90 |
+
lbl_name_list=[],
|
| 91 |
+
transform=transforms.Compose([RescaleT(512),
|
| 92 |
+
ToTensorLab(flag=0)])
|
| 93 |
+
)
|
| 94 |
+
test_salobj_dataloader = DataLoader(test_salobj_dataset,
|
| 95 |
+
batch_size=1,
|
| 96 |
+
shuffle=False,
|
| 97 |
+
num_workers=1)
|
| 98 |
+
|
| 99 |
+
results = []
|
| 100 |
+
# --------- 4. inference for each image ---------
|
| 101 |
+
for i_test, data_test in enumerate(test_salobj_dataloader):
|
| 102 |
+
|
| 103 |
+
print("inferencing:", img_name_list[i_test].split(os.sep)[-1])
|
| 104 |
+
|
| 105 |
+
inputs_test = data_test['image']
|
| 106 |
+
inputs_test = inputs_test.type(torch.FloatTensor)
|
| 107 |
+
|
| 108 |
+
# if torch.cuda.is_available():
|
| 109 |
+
# inputs_test = Variable(inputs_test.cuda())
|
| 110 |
+
# else:
|
| 111 |
+
inputs_test = Variable(inputs_test)
|
| 112 |
+
|
| 113 |
+
d1, d2, d3, d4, d5, d6, d7 = net(inputs_test)
|
| 114 |
+
|
| 115 |
+
# normalization
|
| 116 |
+
pred = 1.0 - d1[:, 0, :, :]
|
| 117 |
+
pred = normPRED(pred)
|
| 118 |
+
|
| 119 |
+
# save results to test_results folder
|
| 120 |
+
results.append(save_output(img_name_list[i_test], pred, prediction_dir))
|
| 121 |
+
|
| 122 |
+
del d1, d2, d3, d4, d5, d6, d7
|
| 123 |
+
|
| 124 |
+
print(results)
|
| 125 |
+
|
| 126 |
+
return Image.open(results[0])
|
| 127 |
|
| 128 |
title = "U-2-Net"
|
| 129 |
description = "Gradio demo for U-2-Net, https://github.com/xuebinqin/U-2-Net"
|