Spaces:
Running
on
Zero
Running
on
Zero
update ncut(legacy)
Browse files
app.py
CHANGED
|
@@ -2,8 +2,11 @@
|
|
| 2 |
# %%
|
| 3 |
USE_SPACES = True
|
| 4 |
|
| 5 |
-
if USE_SPACES:
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
|
|
@@ -14,10 +17,7 @@ import time
|
|
| 14 |
|
| 15 |
import gradio as gr
|
| 16 |
|
| 17 |
-
|
| 18 |
-
from backbone import extract_features
|
| 19 |
-
else:
|
| 20 |
-
from draft_gradio_backbone import extract_features
|
| 21 |
from ncut_pytorch import NCUT, eigenvector_to_rgb
|
| 22 |
|
| 23 |
|
|
@@ -88,9 +88,11 @@ def to_pil_images(images):
|
|
| 88 |
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.Resampling.NEAREST)
|
| 89 |
for image in images
|
| 90 |
]
|
|
|
|
| 91 |
|
| 92 |
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
|
| 93 |
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
|
|
|
|
| 94 |
|
| 95 |
downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
|
| 96 |
downscaled_outputs = ['./images/ncut_0_small.jpg', './images/ncut_1_small.jpg', './images/ncut_2_small.jpg', './images/ncut_3_small.jpg', './images/ncut_5_small.jpg']
|
|
@@ -113,6 +115,7 @@ def ncut_run(
|
|
| 113 |
n_neighbors=500,
|
| 114 |
min_dist=0.1,
|
| 115 |
sampling_method="fps",
|
|
|
|
| 116 |
):
|
| 117 |
logging_str = ""
|
| 118 |
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
|
|
@@ -134,22 +137,44 @@ def ncut_run(
|
|
| 134 |
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
|
| 135 |
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
return to_pil_images(rgb), logging_str
|
| 154 |
|
| 155 |
def _ncut_run(*args, **kwargs):
|
|
@@ -205,6 +230,7 @@ def run_fn(
|
|
| 205 |
n_neighbors=500,
|
| 206 |
min_dist=0.1,
|
| 207 |
sampling_method="fps",
|
|
|
|
| 208 |
):
|
| 209 |
if images is None:
|
| 210 |
gr.Warning("No images selected.")
|
|
@@ -228,10 +254,13 @@ def run_fn(
|
|
| 228 |
"n_neighbors": n_neighbors,
|
| 229 |
"min_dist": min_dist,
|
| 230 |
"sampling_method": sampling_method,
|
|
|
|
| 231 |
}
|
| 232 |
num_images = len(images)
|
| 233 |
if num_images > 100:
|
| 234 |
return super_duper_long_run(images, **kwargs)
|
|
|
|
|
|
|
| 235 |
if num_images > 10:
|
| 236 |
return long_run(images, **kwargs)
|
| 237 |
if embedding_method == "UMAP":
|
|
@@ -244,73 +273,47 @@ def run_fn(
|
|
| 244 |
return quick_run(images, **kwargs)
|
| 245 |
|
| 246 |
return quick_run(images, **kwargs)
|
| 247 |
-
|
| 248 |
-
with gr.Blocks() as demo:
|
| 249 |
|
| 250 |
-
with gr.Row():
|
| 251 |
-
with gr.Column(scale=5, min_width=200):
|
| 252 |
-
gr.Markdown('### Input Images')
|
| 253 |
-
input_gallery = gr.Gallery(value=[], label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
|
| 254 |
-
submit_button = gr.Button("🔴RUN", elem_id="submit_button")
|
| 255 |
-
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button')
|
| 256 |
-
|
| 257 |
-
gr.Markdown('### Load from Cloud Dataset 👇')
|
| 258 |
-
load_images_button = gr.Button("Load Example", elem_id="load-images-button")
|
| 259 |
-
example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery")
|
| 260 |
-
hide_button = gr.Button("Hide Example", elem_id="hide-button")
|
| 261 |
-
|
| 262 |
-
hide_button.click(
|
| 263 |
-
fn=lambda: gr.update(visible=False),
|
| 264 |
-
outputs=example_gallery
|
| 265 |
-
)
|
| 266 |
-
|
| 267 |
-
with gr.Accordion("➜ Load from dataset", open=True):
|
| 268 |
-
dataset_names = [
|
| 269 |
-
'UCSC-VLAA/Recap-COCO-30K',
|
| 270 |
-
'nateraw/pascal-voc-2012',
|
| 271 |
-
'johnowhitaker/imagenette2-320',
|
| 272 |
-
'jainr3/diffusiondb-pixelart',
|
| 273 |
-
'JapanDegitalMaterial/Places_in_Japan',
|
| 274 |
-
'Borismile/Anime-dataset',
|
| 275 |
-
]
|
| 276 |
-
dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="UCSC-VLAA/Recap-COCO-30K", elem_id="dataset")
|
| 277 |
-
num_images_slider = gr.Slider(1, 200, step=1, label="Number of images", value=9, elem_id="num_images")
|
| 278 |
-
random_seed_slider = gr.Number(0, label="Random seed", value=42, elem_id="random_seed")
|
| 279 |
-
load_dataset_button = gr.Button("Load Dataset", elem_id="load-dataset-button")
|
| 280 |
-
|
| 281 |
-
with gr.Column(scale=5, min_width=200):
|
| 282 |
-
gr.Markdown('### Output Images')
|
| 283 |
-
output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
|
| 284 |
-
model_dropdown = gr.Dropdown(["SAM(sam_vit_b)", "MobileSAM", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)", "MAE(vit_base)"], label="Backbone", value="SAM(sam_vit_b)", elem_id="model_name")
|
| 285 |
-
layer_slider = gr.Slider(0, 11, step=1, label="Backbone: Layer index", value=11, elem_id="layer")
|
| 286 |
-
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
|
| 287 |
-
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
|
| 288 |
-
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
|
| 289 |
-
|
| 290 |
-
with gr.Accordion("➜ Click to expand: more parameters", open=False):
|
| 291 |
-
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
|
| 292 |
-
sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method")
|
| 293 |
-
knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
|
| 294 |
-
embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
|
| 295 |
-
num_sample_tsne_slider = gr.Slider(100, 1000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
|
| 296 |
-
knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
|
| 297 |
-
perplexity_slider = gr.Slider(10, 500, step=10, label="t-SNE: Perplexity", value=150, elem_id="perplexity")
|
| 298 |
-
n_neighbors_slider = gr.Slider(10, 500, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
|
| 299 |
-
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
|
| 300 |
-
|
| 301 |
-
# logging text box
|
| 302 |
-
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
|
| 303 |
-
|
| 304 |
-
def load_default_images():
|
| 305 |
-
return default_images, default_outputs
|
| 306 |
|
| 307 |
-
def empty_input_and_output():
|
| 308 |
-
return [], []
|
| 309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
def load_dataset_images(dataset_name, num_images=10, random_seed=42):
|
| 311 |
from datasets import load_dataset
|
| 312 |
try:
|
| 313 |
-
dataset = load_dataset(dataset_name)
|
|
|
|
|
|
|
| 314 |
except Exception as e:
|
| 315 |
gr.Error(f"Error loading dataset {dataset_name}: {e}")
|
| 316 |
return None
|
|
@@ -319,27 +322,135 @@ with gr.Blocks() as demo:
|
|
| 319 |
image_idx = np.random.RandomState(random_seed).choice(len(dataset), num_images, replace=False)
|
| 320 |
image_idx = image_idx.tolist()
|
| 321 |
images = [dataset[i]['image'] for i in image_idx]
|
| 322 |
-
return images
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
load_images_button.click(load_default_images, outputs=[input_gallery, output_gallery])
|
| 326 |
-
clear_images_button.click(empty_input_and_output, outputs=[input_gallery, output_gallery])
|
| 327 |
load_dataset_button.click(load_dataset_images, inputs=[dataset_dropdown, num_images_slider, random_seed_slider], outputs=[input_gallery])
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
| 333 |
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
| 334 |
-
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
| 335 |
-
|
| 336 |
-
outputs=[output_gallery, logging_text]
|
| 337 |
-
)
|
| 338 |
|
|
|
|
| 339 |
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
|
| 345 |
# %%
|
|
|
|
| 2 |
# %%
|
| 3 |
USE_SPACES = True
|
| 4 |
|
| 5 |
+
if USE_SPACES: # huggingface ZeroGPU
|
| 6 |
+
try:
|
| 7 |
+
import spaces
|
| 8 |
+
except ImportError:
|
| 9 |
+
USE_SPACES = False # run on standard GPU
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
|
|
|
|
| 17 |
|
| 18 |
import gradio as gr
|
| 19 |
|
| 20 |
+
from backbone import extract_features
|
|
|
|
|
|
|
|
|
|
| 21 |
from ncut_pytorch import NCUT, eigenvector_to_rgb
|
| 22 |
|
| 23 |
|
|
|
|
| 88 |
Image.fromarray((image * 255).cpu().numpy().astype(np.uint8)).resize((256, 256), Image.Resampling.NEAREST)
|
| 89 |
for image in images
|
| 90 |
]
|
| 91 |
+
|
| 92 |
|
| 93 |
default_images = ['./images/image_0.jpg', './images/image_1.jpg', './images/image_2.jpg', './images/image_3.jpg', './images/image_5.jpg']
|
| 94 |
default_outputs = ['./images/ncut_0.jpg', './images/ncut_1.jpg', './images/ncut_2.jpg', './images/ncut_3.jpg', './images/ncut_5.jpg']
|
| 95 |
+
default_outputs_independent = ['./images/ncut_0_independent.jpg', './images/ncut_1_independent.jpg', './images/ncut_2_independent.jpg', './images/ncut_3_independent.jpg', './images/ncut_5_independent.jpg']
|
| 96 |
|
| 97 |
downscaled_images = ['./images/image_0_small.jpg', './images/image_1_small.jpg', './images/image_2_small.jpg', './images/image_3_small.jpg', './images/image_5_small.jpg']
|
| 98 |
downscaled_outputs = ['./images/ncut_0_small.jpg', './images/ncut_1_small.jpg', './images/ncut_2_small.jpg', './images/ncut_3_small.jpg', './images/ncut_5_small.jpg']
|
|
|
|
| 115 |
n_neighbors=500,
|
| 116 |
min_dist=0.1,
|
| 117 |
sampling_method="fps",
|
| 118 |
+
old_school_ncut=False,
|
| 119 |
):
|
| 120 |
logging_str = ""
|
| 121 |
if perplexity >= num_sample_tsne or n_neighbors >= num_sample_tsne:
|
|
|
|
| 137 |
# print(f"Feature extraction time (gpu): {time.time() - start:.2f}s")
|
| 138 |
logging_str += f"Backbone time: {time.time() - start:.2f}s\n"
|
| 139 |
|
| 140 |
+
if not old_school_ncut: # joint across all images
|
| 141 |
+
rgb, _logging_str = compute_ncut(
|
| 142 |
+
features,
|
| 143 |
+
num_eig=num_eig,
|
| 144 |
+
num_sample_ncut=num_sample_ncut,
|
| 145 |
+
affinity_focal_gamma=affinity_focal_gamma,
|
| 146 |
+
knn_ncut=knn_ncut,
|
| 147 |
+
knn_tsne=knn_tsne,
|
| 148 |
+
num_sample_tsne=num_sample_tsne,
|
| 149 |
+
embedding_method=embedding_method,
|
| 150 |
+
perplexity=perplexity,
|
| 151 |
+
n_neighbors=n_neighbors,
|
| 152 |
+
min_dist=min_dist,
|
| 153 |
+
sampling_method=sampling_method,
|
| 154 |
+
)
|
| 155 |
+
logging_str += _logging_str
|
| 156 |
+
rgb = dont_use_too_much_green(rgb)
|
| 157 |
+
if old_school_ncut: # individual images
|
| 158 |
+
logging_str += "Running NCut for each image independently\n"
|
| 159 |
+
rgb = []
|
| 160 |
+
for i_image in range(features.shape[0]):
|
| 161 |
+
feature = features[i_image]
|
| 162 |
+
_rgb, _logging_str = compute_ncut(
|
| 163 |
+
feature[None],
|
| 164 |
+
num_eig=num_eig,
|
| 165 |
+
num_sample_ncut=num_sample_ncut,
|
| 166 |
+
affinity_focal_gamma=affinity_focal_gamma,
|
| 167 |
+
knn_ncut=knn_ncut,
|
| 168 |
+
knn_tsne=knn_tsne,
|
| 169 |
+
num_sample_tsne=num_sample_tsne,
|
| 170 |
+
embedding_method=embedding_method,
|
| 171 |
+
perplexity=perplexity,
|
| 172 |
+
n_neighbors=n_neighbors,
|
| 173 |
+
min_dist=min_dist,
|
| 174 |
+
sampling_method=sampling_method,
|
| 175 |
+
)
|
| 176 |
+
logging_str += _logging_str
|
| 177 |
+
rgb.append(_rgb[0])
|
| 178 |
return to_pil_images(rgb), logging_str
|
| 179 |
|
| 180 |
def _ncut_run(*args, **kwargs):
|
|
|
|
| 230 |
n_neighbors=500,
|
| 231 |
min_dist=0.1,
|
| 232 |
sampling_method="fps",
|
| 233 |
+
old_school_ncut=False,
|
| 234 |
):
|
| 235 |
if images is None:
|
| 236 |
gr.Warning("No images selected.")
|
|
|
|
| 254 |
"n_neighbors": n_neighbors,
|
| 255 |
"min_dist": min_dist,
|
| 256 |
"sampling_method": sampling_method,
|
| 257 |
+
"old_school_ncut": old_school_ncut,
|
| 258 |
}
|
| 259 |
num_images = len(images)
|
| 260 |
if num_images > 100:
|
| 261 |
return super_duper_long_run(images, **kwargs)
|
| 262 |
+
if num_images > 50:
|
| 263 |
+
return longer_run(images, **kwargs)
|
| 264 |
if num_images > 10:
|
| 265 |
return long_run(images, **kwargs)
|
| 266 |
if embedding_method == "UMAP":
|
|
|
|
| 273 |
return quick_run(images, **kwargs)
|
| 274 |
|
| 275 |
return quick_run(images, **kwargs)
|
|
|
|
|
|
|
| 276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
|
|
|
|
|
|
| 278 |
|
| 279 |
+
def make_input_images_section():
|
| 280 |
+
gr.Markdown('### Input Images')
|
| 281 |
+
input_gallery = gr.Gallery(value=[], label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil", show_share_button=False)
|
| 282 |
+
submit_button = gr.Button("🔴RUN", elem_id="submit_button")
|
| 283 |
+
clear_images_button = gr.Button("🗑️Clear", elem_id='clear_button')
|
| 284 |
+
return input_gallery, submit_button, clear_images_button
|
| 285 |
+
|
| 286 |
+
def make_example_images_section():
|
| 287 |
+
gr.Markdown('### Load from Cloud Dataset 👇')
|
| 288 |
+
load_images_button = gr.Button("Load Example", elem_id="load-images-button")
|
| 289 |
+
example_gallery = gr.Gallery(value=example_items, label="Example Set A", show_label=False, columns=[3], rows=[2], object_fit="scale-down", height="200px", show_share_button=False, elem_id="example-gallery")
|
| 290 |
+
hide_button = gr.Button("Hide Example", elem_id="hide-button")
|
| 291 |
+
hide_button.click(
|
| 292 |
+
fn=lambda: gr.update(visible=False),
|
| 293 |
+
outputs=example_gallery
|
| 294 |
+
)
|
| 295 |
+
return load_images_button, example_gallery, hide_button
|
| 296 |
+
|
| 297 |
+
def make_dataset_images_section():
|
| 298 |
+
with gr.Accordion("➜ Load from dataset", open=True):
|
| 299 |
+
dataset_names = [
|
| 300 |
+
'UCSC-VLAA/Recap-COCO-30K',
|
| 301 |
+
'nateraw/pascal-voc-2012',
|
| 302 |
+
'johnowhitaker/imagenette2-320',
|
| 303 |
+
'jainr3/diffusiondb-pixelart',
|
| 304 |
+
'JapanDegitalMaterial/Places_in_Japan',
|
| 305 |
+
'Borismile/Anime-dataset',
|
| 306 |
+
]
|
| 307 |
+
dataset_dropdown = gr.Dropdown(dataset_names, label="Dataset name", value="UCSC-VLAA/Recap-COCO-30K", elem_id="dataset")
|
| 308 |
+
num_images_slider = gr.Slider(1, 200, step=1, label="Number of images", value=9, elem_id="num_images")
|
| 309 |
+
random_seed_slider = gr.Number(0, label="Random seed", value=42, elem_id="random_seed")
|
| 310 |
+
load_dataset_button = gr.Button("Load Dataset", elem_id="load-dataset-button")
|
| 311 |
def load_dataset_images(dataset_name, num_images=10, random_seed=42):
|
| 312 |
from datasets import load_dataset
|
| 313 |
try:
|
| 314 |
+
dataset = load_dataset(dataset_name)
|
| 315 |
+
key = list(dataset.keys())[0]
|
| 316 |
+
dataset = dataset[key]
|
| 317 |
except Exception as e:
|
| 318 |
gr.Error(f"Error loading dataset {dataset_name}: {e}")
|
| 319 |
return None
|
|
|
|
| 322 |
image_idx = np.random.RandomState(random_seed).choice(len(dataset), num_images, replace=False)
|
| 323 |
image_idx = image_idx.tolist()
|
| 324 |
images = [dataset[i]['image'] for i in image_idx]
|
| 325 |
+
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
load_dataset_button.click(load_dataset_images, inputs=[dataset_dropdown, num_images_slider, random_seed_slider], outputs=[input_gallery])
|
| 327 |
+
return dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button
|
| 328 |
+
|
| 329 |
+
def make_output_images_section():
|
| 330 |
+
gr.Markdown('### Output Images')
|
| 331 |
+
output_gallery = gr.Gallery(value=[], label="NCUT Embedding", show_label=False, elem_id="ncut", columns=[3], rows=[1], object_fit="contain", height="auto")
|
| 332 |
+
return output_gallery
|
| 333 |
+
|
| 334 |
+
def make_parameters_section():
|
| 335 |
+
gr.Markdown('### Parameters')
|
| 336 |
+
model_dropdown = gr.Dropdown(["SAM(sam_vit_b)", "MobileSAM", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)", "MAE(vit_base)"], label="Backbone", value="SAM(sam_vit_b)", elem_id="model_name")
|
| 337 |
+
layer_slider = gr.Slider(0, 11, step=1, label="Backbone: Layer index", value=11, elem_id="layer")
|
| 338 |
+
node_type_dropdown = gr.Dropdown(["attn: attention output", "mlp: mlp output", "block: sum of residual"], label="Backbone: Layer type", value="block: sum of residual", elem_id="node_type", info="which feature to take from each layer?")
|
| 339 |
+
num_eig_slider = gr.Slider(1, 1000, step=1, label="NCUT: Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more clusters')
|
| 340 |
+
affinity_focal_gamma_slider = gr.Slider(0.01, 1, step=0.01, label="NCUT: Affinity focal gamma", value=0.5, elem_id="affinity_focal_gamma", info="decrease for shaper segmentation")
|
| 341 |
+
|
| 342 |
+
with gr.Accordion("➜ Click to expand: more parameters", open=False):
|
| 343 |
+
num_sample_ncut_slider = gr.Slider(100, 50000, step=100, label="NCUT: num_sample", value=10000, elem_id="num_sample_ncut", info="Nyström approximation")
|
| 344 |
+
sampling_method_dropdown = gr.Dropdown(["fps", "random"], label="NCUT: Sampling method", value="fps", elem_id="sampling_method")
|
| 345 |
+
knn_ncut_slider = gr.Slider(1, 100, step=1, label="NCUT: KNN", value=10, elem_id="knn_ncut", info="Nyström approximation")
|
| 346 |
+
embedding_method_dropdown = gr.Dropdown(["tsne_3d", "umap_3d", "umap_shpere", "tsne_2d", "umap_2d"], label="Coloring method", value="tsne_3d", elem_id="embedding_method")
|
| 347 |
+
num_sample_tsne_slider = gr.Slider(100, 1000, step=100, label="t-SNE/UMAP: num_sample", value=300, elem_id="num_sample_tsne", info="Nyström approximation")
|
| 348 |
+
knn_tsne_slider = gr.Slider(1, 100, step=1, label="t-SNE/UMAP: KNN", value=10, elem_id="knn_tsne", info="Nyström approximation")
|
| 349 |
+
perplexity_slider = gr.Slider(10, 500, step=10, label="t-SNE: Perplexity", value=150, elem_id="perplexity")
|
| 350 |
+
n_neighbors_slider = gr.Slider(10, 500, step=10, label="UMAP: n_neighbors", value=150, elem_id="n_neighbors")
|
| 351 |
+
min_dist_slider = gr.Slider(0.1, 1, step=0.1, label="UMAP: min_dist", value=0.1, elem_id="min_dist")
|
| 352 |
+
return [model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
|
| 353 |
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
| 354 |
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
| 355 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
| 356 |
+
sampling_method_dropdown]
|
|
|
|
|
|
|
| 357 |
|
| 358 |
+
with gr.Blocks() as demo:
|
| 359 |
|
| 360 |
+
with gr.Tab('AlignedCut (Images)'):
|
| 361 |
+
|
| 362 |
+
with gr.Row():
|
| 363 |
+
with gr.Column(scale=5, min_width=200):
|
| 364 |
+
input_gallery, submit_button, clear_images_button = make_input_images_section()
|
| 365 |
+
load_images_button, example_gallery, hide_button = make_example_images_section()
|
| 366 |
+
dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button = make_dataset_images_section()
|
| 367 |
+
|
| 368 |
+
with gr.Column(scale=5, min_width=200):
|
| 369 |
+
output_gallery = make_output_images_section()
|
| 370 |
+
[
|
| 371 |
+
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
|
| 372 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
| 373 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
| 374 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
| 375 |
+
sampling_method_dropdown
|
| 376 |
+
] = make_parameters_section()
|
| 377 |
+
# logging text box
|
| 378 |
+
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
|
| 379 |
+
load_images_button.click(lambda x: (default_images, default_outputs), outputs=[input_gallery, output_gallery])
|
| 380 |
+
|
| 381 |
+
clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
|
| 382 |
+
submit_button.click(
|
| 383 |
+
run_fn,
|
| 384 |
+
inputs=[
|
| 385 |
+
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
|
| 386 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
| 387 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
| 388 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown
|
| 389 |
+
],
|
| 390 |
+
outputs=[output_gallery, logging_text]
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
with gr.Tab('NCut (Legacy)'):
|
| 394 |
+
gr.Markdown('#### Ncut, not aligned, no Nyström approximation')
|
| 395 |
+
gr.Markdown('1. Each image is solved independently, _color is not aligned across images_')
|
| 396 |
+
gr.Markdown('2. No Nyström approximation')
|
| 397 |
+
|
| 398 |
+
gr.Markdown('### NCut (Legacy) vs. AlignedCut:')
|
| 399 |
+
with gr.Row():
|
| 400 |
+
with gr.Column(scale=5, min_width=200):
|
| 401 |
+
gr.Markdown('#### Pros')
|
| 402 |
+
gr.Markdown('- Easy Solution. Use less eigenvectors.')
|
| 403 |
+
gr.Markdown('- Exact solution. No Nyström approximation.')
|
| 404 |
+
with gr.Column(scale=5, min_width=200):
|
| 405 |
+
gr.Markdown('#### Cons')
|
| 406 |
+
gr.Markdown('- Not aligned. Distance is not preserved across images. No pseudo-labeling or correspondence.')
|
| 407 |
+
gr.Markdown('- Poor complexity scaling. Unable to handle large number of pixels.')
|
| 408 |
+
gr.Markdown('---')
|
| 409 |
+
with gr.Row():
|
| 410 |
+
with gr.Column(scale=5, min_width=200):
|
| 411 |
+
gr.Markdown(' ')
|
| 412 |
+
with gr.Column(scale=5, min_width=200):
|
| 413 |
+
gr.Markdown('_color is not aligned across images_ 👇')
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
with gr.Row():
|
| 417 |
+
with gr.Column(scale=5, min_width=200):
|
| 418 |
+
input_gallery, submit_button, clear_images_button = make_input_images_section()
|
| 419 |
+
load_images_button, example_gallery, hide_button = make_example_images_section()
|
| 420 |
+
dataset_dropdown, num_images_slider, random_seed_slider, load_dataset_button = make_dataset_images_section()
|
| 421 |
+
example_gallery.visible = False
|
| 422 |
+
hide_button.visible = False
|
| 423 |
+
|
| 424 |
+
with gr.Column(scale=5, min_width=200):
|
| 425 |
+
output_gallery = make_output_images_section()
|
| 426 |
+
[
|
| 427 |
+
model_dropdown, layer_slider, node_type_dropdown, num_eig_slider,
|
| 428 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
| 429 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
| 430 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider,
|
| 431 |
+
sampling_method_dropdown
|
| 432 |
+
] = make_parameters_section()
|
| 433 |
+
old_school_ncut_checkbox = gr.Checkbox(label="Old school NCut", value=True, elem_id="old_school_ncut")
|
| 434 |
+
invisible_list = [old_school_ncut_checkbox, num_sample_ncut_slider, knn_ncut_slider,
|
| 435 |
+
num_sample_tsne_slider, knn_tsne_slider, sampling_method_dropdown]
|
| 436 |
+
for item in invisible_list:
|
| 437 |
+
item.visible = False
|
| 438 |
+
# logging text box
|
| 439 |
+
logging_text = gr.Textbox("Logging information", label="Logging", elem_id="logging", type="text", placeholder="Logging information")
|
| 440 |
+
load_images_button.click(lambda x: (default_images, default_outputs_independent), outputs=[input_gallery, output_gallery])
|
| 441 |
+
|
| 442 |
+
clear_images_button.click(lambda x: ([], []), outputs=[input_gallery, output_gallery])
|
| 443 |
+
submit_button.click(
|
| 444 |
+
run_fn,
|
| 445 |
+
inputs=[
|
| 446 |
+
input_gallery, model_dropdown, layer_slider, num_eig_slider, node_type_dropdown,
|
| 447 |
+
affinity_focal_gamma_slider, num_sample_ncut_slider, knn_ncut_slider,
|
| 448 |
+
embedding_method_dropdown, num_sample_tsne_slider, knn_tsne_slider,
|
| 449 |
+
perplexity_slider, n_neighbors_slider, min_dist_slider, sampling_method_dropdown,
|
| 450 |
+
old_school_ncut_checkbox
|
| 451 |
+
],
|
| 452 |
+
outputs=[output_gallery, logging_text]
|
| 453 |
+
)
|
| 454 |
+
demo.launch(share=True)
|
| 455 |
|
| 456 |
# %%
|