Upload folder using huggingface_hub
Browse files- __pycache__/mps-api.cpython-310.pyc +0 -0
- app.py +5 -4
- mps-api.py +37 -7
__pycache__/mps-api.cpython-310.pyc
CHANGED
Binary files a/__pycache__/mps-api.cpython-310.pyc and b/__pycache__/mps-api.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -2,7 +2,8 @@ import gradio as gr
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
|
5 |
-
api_url
|
|
|
6 |
|
7 |
origins = {
|
8 |
'Formation' : ['formation.presentation', 'formation.summary'],
|
@@ -13,14 +14,14 @@ origins = {
|
|
13 |
'metier.format_court2']
|
14 |
}
|
15 |
|
16 |
-
def
|
17 |
# Query API
|
18 |
json = dict(
|
19 |
query=query,
|
20 |
origins=origins[origin]
|
21 |
)
|
22 |
|
23 |
-
resp = requests.post(url=api_url, json=json)
|
24 |
data = resp.json()
|
25 |
|
26 |
# Format result
|
@@ -33,7 +34,7 @@ def API(origin='Formation', query='cuisine'):
|
|
33 |
return df
|
34 |
|
35 |
gradio_app = gr.Interface(
|
36 |
-
fn=
|
37 |
inputs=[
|
38 |
gr.Dropdown(list(origins.keys()), label="Origine", info="Choisir un type de donnée à interroger"),
|
39 |
gr.Textbox(label="Recherche", info="Votre recherche")
|
|
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
|
5 |
+
def api_url(remote):
|
6 |
+
return f"https://huynhdoo--mps-api-{remote}.modal.run"
|
7 |
|
8 |
origins = {
|
9 |
'Formation' : ['formation.presentation', 'formation.summary'],
|
|
|
14 |
'metier.format_court2']
|
15 |
}
|
16 |
|
17 |
+
def retrieve(origin='Formation', query='cuisine'):
|
18 |
# Query API
|
19 |
json = dict(
|
20 |
query=query,
|
21 |
origins=origins[origin]
|
22 |
)
|
23 |
|
24 |
+
resp = requests.post(url=api_url('retrieve'), json=json)
|
25 |
data = resp.json()
|
26 |
|
27 |
# Format result
|
|
|
34 |
return df
|
35 |
|
36 |
gradio_app = gr.Interface(
|
37 |
+
fn=retrieve,
|
38 |
inputs=[
|
39 |
gr.Dropdown(list(origins.keys()), label="Origine", info="Choisir un type de donnée à interroger"),
|
40 |
gr.Textbox(label="Recherche", info="Votre recherche")
|
mps-api.py
CHANGED
@@ -9,6 +9,7 @@ model_image = (Image.debian_slim(python_version="3.12")
|
|
9 |
# Utilities
|
10 |
with model_image.imports():
|
11 |
import os
|
|
|
12 |
__import__("pysqlite3")
|
13 |
sys.modules["sqlite3"] = sys.modules.pop("pysqlite3") # Hotswap SQLlite version
|
14 |
|
@@ -42,7 +43,7 @@ class VECTORDB:
|
|
42 |
print(f"{self.chroma_collection.count()} documents loaded.")
|
43 |
|
44 |
@method()
|
45 |
-
def
|
46 |
results = self.chroma_collection.query(
|
47 |
query_texts=[query],
|
48 |
n_results=10,
|
@@ -54,18 +55,47 @@ class VECTORDB:
|
|
54 |
distances = results['distances'][0]
|
55 |
return documents, metadatas, distances
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
###########
|
58 |
# ENDPOINTS
|
59 |
###########
|
60 |
@app.function(timeout=30*60)
|
61 |
@web_endpoint(method="POST")
|
62 |
-
def
|
63 |
# Log query
|
64 |
-
print(f"
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
|
69 |
-
# Run query
|
70 |
-
documents, metadatas, distances = vectordb.query.remote(query['query'], query['origins'])
|
71 |
return {"documents" : documents, "metadatas" : metadatas, "distances" : distances}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Utilities
|
10 |
with model_image.imports():
|
11 |
import os
|
12 |
+
import numpy as np
|
13 |
__import__("pysqlite3")
|
14 |
sys.modules["sqlite3"] = sys.modules.pop("pysqlite3") # Hotswap SQLlite version
|
15 |
|
|
|
43 |
print(f"{self.chroma_collection.count()} documents loaded.")
|
44 |
|
45 |
@method()
|
46 |
+
def search(self, query, origins):
|
47 |
results = self.chroma_collection.query(
|
48 |
query_texts=[query],
|
49 |
n_results=10,
|
|
|
55 |
distances = results['distances'][0]
|
56 |
return documents, metadatas, distances
|
57 |
|
58 |
+
@app.cls(timeout=30*60)
|
59 |
+
class RANKING:
|
60 |
+
@enter()
|
61 |
+
@build()
|
62 |
+
def init(self):
|
63 |
+
# Load crossencoder
|
64 |
+
from sentence_transformers import CrossEncoder
|
65 |
+
model_name = "Lajavaness/CrossEncoder-camembert-large"
|
66 |
+
self.cross_encoder = CrossEncoder(model_name)
|
67 |
+
print(f"Cross encoder model loaded: {model_name}")
|
68 |
+
|
69 |
+
@method()
|
70 |
+
def rank(self, query, documents):
|
71 |
+
pairs = [[query, doc] for doc in documents]
|
72 |
+
print(pairs)
|
73 |
+
scores = self.cross_encoder.predict(pairs)
|
74 |
+
print(scores)
|
75 |
+
ranking = np.argsort(scores)[::]
|
76 |
+
return ranking
|
77 |
+
|
78 |
###########
|
79 |
# ENDPOINTS
|
80 |
###########
|
81 |
@app.function(timeout=30*60)
|
82 |
@web_endpoint(method="POST")
|
83 |
+
def retrieve(query: Dict):
|
84 |
# Log query
|
85 |
+
print(f"Retrieve query: {query}...")
|
86 |
|
87 |
+
# Searching documents
|
88 |
+
documents, metadatas, distances = VECTORDB().search.remote(query['query'], query['origins'])
|
89 |
|
|
|
|
|
90 |
return {"documents" : documents, "metadatas" : metadatas, "distances" : distances}
|
91 |
+
|
92 |
+
@app.function(timeout=30*60)
|
93 |
+
@web_endpoint(method="POST")
|
94 |
+
def rank(query: Dict):
|
95 |
+
# Log query
|
96 |
+
print(f"Rank query: {query}...")
|
97 |
+
|
98 |
+
# Ranking documents
|
99 |
+
ranking = RANKING().rank.remote(query['query'], query['documents'])
|
100 |
+
|
101 |
+
return {"ranking" : ranking}
|