mps / app.py
huynhdoo's picture
Upload folder using huggingface_hub
5125874 verified
raw
history blame
1.77 kB
import gradio as gr
import requests
import pandas as pd
api_url = 'https://huynhdoo--mps-api-query.modal.run'
origins = {
'Formation' : ['formation.presentation', 'formation.summary'],
'Métier' : ['metier.presentation', 'metier.competences',
'metier.condition_travail', 'metier.nature_travail',
'metier.acces_metier', 'metier.vie_professionnelle',
'metier.accroche_metier', 'metier.format_court1',
'metier.format_court2']
}
def API(origin='Formation', query='cuisine'):
# Query API
json = dict(
query=query,
origins=origins[origin]
)
resp = requests.post(url=api_url, json=json)
data = resp.json()
# Format result
distances = pd.DataFrame({'distance': data['distances']})
metadatas = pd.DataFrame(data['metadatas'])
documents = pd.DataFrame({'document': data['documents']})
df = pd.concat([distances, metadatas, documents], axis=1)
df['distance'] = df['distance'].apply(lambda x: round(x, 3))
df['origin'] = df['origin'].apply(lambda x: x.split('.')[1])
return df
gradio_app = gr.Interface(
fn=API,
inputs=[
gr.Dropdown(list(origins.keys()), label="Origine", info="Choisir un type de donnée à interroger"),
gr.Textbox(label="Recherche", info="Votre recherche")
],
outputs=[
gr.DataFrame(label="Résultats", headers=["Distance", "Key", "Label", "Origin", "Document"])
],
examples=[['Formation', 'militaire'],
['Métier', 'cuisine'],
['Formation', 'écologie'],
['Métier', 'eau'],
['Formation', 'math'],
],
cache_examples=False
)
if __name__ == "__main__":
gradio_app.launch(auth=("mps", "sup"), share=True)