import pandas as pd import numpy as np from sklearn.ensemble import VotingRegressor from sklearn.base import BaseEstimator, RegressorMixin import gradio as gr import joblib class FastAIWrapper(BaseEstimator, RegressorMixin): def __init__(self, learn): self.learn = learn def fit(self, X, y): return self def predict(self, X): dl = self.learn.dls.test_dl(X) preds, _ = self.learn.get_preds(dl=dl) return preds.numpy().flatten() # Load your data and trained model df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False) ensemble = joblib.load('ensemble_model.joblib') def predict_total_pay(gender, job_title, ethnicity): # Create a sample input DataFrame sample = pd.DataFrame({ 'GENDER': [gender], 'JOB_TITLE': [job_title], 'ETHNICITY': [ethnicity], }) # Fill in other required features (you may need to adjust this based on your model's requirements) sample['EMPLOYMENT_TYPE'] = df['EMPLOYMENT_TYPE'].mode().iloc[0] sample['JOB_STATUS'] = df['JOB_STATUS'].mode().iloc[0] sample['MOU'] = df['MOU'].mode().iloc[0] sample['DEPARTMENT_NO'] = df['DEPARTMENT_NO'].mode().iloc[0] sample['PAY_YEAR'] = df['PAY_YEAR'].max() sample['REGULAR_PAY'] = df['REGULAR_PAY'].mean() sample['OVERTIME_PAY'] = df['OVERTIME_PAY'].mean() sample['ALL_OTHER_PAY'] = df['ALL_OTHER_PAY'].mean() # Calculate derived features sample['PAY_RATIO'] = sample['REGULAR_PAY'] / (sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] + 1) sample['TOTAL_NON_REGULAR_PAY'] = sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] # Make prediction prediction = ensemble.predict(sample)[0] return prediction def predict_total_pay(gender, job_title, ethnicity): # Function to predict total pay based on input parameters # Parameters: # gender: str - The gender of the employee # job_title: str - The job title of the employee # ethnicity: str - The ethnicity of the employee # Create a sample input DataFrame with the given parameters # This will be used as input for the prediction model sample = pd.DataFrame({ 'GENDER': [gender], 'JOB_TITLE': [job_title], 'ETHNICITY': [ethnicity], }) # Filter the main DataFrame (df) to find exact matches for the input combination # This creates a subset of data that matches all three input parameters group = df[(df['GENDER'] == gender) & (df['JOB_TITLE'] == job_title) & (df['ETHNICITY'] == ethnicity)] if len(group) > 0: # If exact matches are found, use their statistics to populate the sample # For categorical variables, use the mode (most frequent value) sample['EMPLOYMENT_TYPE'] = [group['EMPLOYMENT_TYPE'].mode().iloc[0]] sample['JOB_STATUS'] = [group['JOB_STATUS'].mode().iloc[0]] sample['MOU'] = [group['MOU'].mode().iloc[0]] sample['DEPARTMENT_NO'] = [group['DEPARTMENT_NO'].mode().iloc[0]] # For numerical variables, use the mean sample['REGULAR_PAY'] = [group['REGULAR_PAY'].mean()] sample['OVERTIME_PAY'] = [group['OVERTIME_PAY'].mean()] sample['ALL_OTHER_PAY'] = [group['ALL_OTHER_PAY'].mean()] else: # If no exact match is found, try to find a broader match based on job_title job_group = df[df['JOB_TITLE'] == job_title] if len(job_group) > 0: # If job title matches are found, use their statistics sample['EMPLOYMENT_TYPE'] = [job_group['EMPLOYMENT_TYPE'].mode().iloc[0]] sample['JOB_STATUS'] = [job_group['JOB_STATUS'].mode().iloc[0]] sample['MOU'] = [job_group['MOU'].mode().iloc[0]] sample['DEPARTMENT_NO'] = [job_group['DEPARTMENT_NO'].mode().iloc[0]] sample['REGULAR_PAY'] = [job_group['REGULAR_PAY'].mean()] sample['OVERTIME_PAY'] = [job_group['OVERTIME_PAY'].mean()] sample['ALL_OTHER_PAY'] = [job_group['ALL_OTHER_PAY'].mean()] else: # If no job title match is found, use overall statistics from the entire dataset sample['EMPLOYMENT_TYPE'] = [df['EMPLOYMENT_TYPE'].mode().iloc[0]] sample['JOB_STATUS'] = [df['JOB_STATUS'].mode().iloc[0]] sample['MOU'] = [df['MOU'].mode().iloc[0]] sample['DEPARTMENT_NO'] = [df['DEPARTMENT_NO'].mode().iloc[0]] sample['REGULAR_PAY'] = [df['REGULAR_PAY'].mean()] sample['OVERTIME_PAY'] = [df['OVERTIME_PAY'].mean()] sample['ALL_OTHER_PAY'] = [df['ALL_OTHER_PAY'].mean()] # Set PAY_YEAR to the most recent year in the dataset sample['PAY_YEAR'] = [df['PAY_YEAR'].max()] # Calculate derived features # PAY_RATIO: Ratio of regular pay to other types of pay sample['PAY_RATIO'] = sample['REGULAR_PAY'] / (sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] + 1) # TOTAL_NON_REGULAR_PAY: Sum of overtime pay and all other pay sample['TOTAL_NON_REGULAR_PAY'] = sample['OVERTIME_PAY'] + sample['ALL_OTHER_PAY'] # Ensure all categorical columns are of type 'object' to prevent type issues with the model categorical_columns = ['GENDER', 'JOB_TITLE', 'ETHNICITY', 'EMPLOYMENT_TYPE', 'JOB_STATUS', 'MOU', 'DEPARTMENT_NO'] for col in categorical_columns: sample[col] = sample[col].astype('object') # Use the ensemble model to make a prediction # The model takes the sample DataFrame as input and returns a predicted total pay prediction = ensemble.predict(sample)[0] # Return the predicted total pay return prediction # Prepare dropdown options genders = df['GENDER'].dropna().unique().tolist() ethnicities = df['ETHNICITY'].dropna().unique().tolist() job_titles = sorted(df['JOB_TITLE'].dropna().unique().tolist()) # Create Gradio interface iface = gr.Interface( fn=predict_total_pay, inputs=[ gr.Dropdown(choices=genders, label="Gender"), gr.Dropdown(choices=ethnicities, label="Ethnicity"), gr.Dropdown(choices=job_titles, label="Job Title") ], outputs=gr.Textbox(label="Predicted Total Pay"), title="LA City Employee Pay Predictor", description="Predict the total pay for LA City employees based on gender, ethnicity, and job title." ) iface.launch()