Spaces:
Sleeping
Sleeping
File size: 1,188 Bytes
ea189f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import pandas as pd
import numpy as np
import gradio as gr
import joblib
# Load the saved model
ensemble = joblib.load('ensemble_model.joblib')
# Load your data
df = pd.read_csv('City_Employee_Payroll__Current__20240915.csv', low_memory=False)
def predict_total_pay(gender, job_title, ethnicity):
# Your existing prediction function
# ...
def gradio_predict(gender, ethnicity, job_title):
predicted_pay = predict_total_pay(gender, job_title, ethnicity)
return f"${predicted_pay:.2f}"
# Prepare dropdown options
genders = df['GENDER'].dropna().unique().tolist()
ethnicities = df['ETHNICITY'].dropna().unique().tolist()
job_titles = sorted(df['JOB_TITLE'].dropna().unique().tolist())
# Create Gradio interface
iface = gr.Interface(
fn=gradio_predict,
inputs=[
gr.Dropdown(choices=genders, label="Gender"),
gr.Dropdown(choices=ethnicities, label="Ethnicity"),
gr.Dropdown(choices=job_titles, label="Job Title")
],
outputs=gr.Textbox(label="Predicted Total Pay"),
title="LA City Employee Pay Predictor",
description="Predict the total pay for LA City employees based on gender, ethnicity, and job title."
)
iface.launch() |