hunterXdk commited on
Commit
c4b0a5b
·
verified ·
1 Parent(s): 5068258

Using LLAMA

Browse files
Files changed (1) hide show
  1. app.py +111 -0
app.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ from PyPDF2 import PdfReader
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+
7
+ from langchain.vectorstores import FAISS
8
+ from langchain_google_genai import ChatGoogleGenerativeAI
9
+ from langchain.chains.question_answering import load_qa_chain
10
+ from langchain.prompts import PromptTemplate
11
+ from transformers import AutoModelForCausalLM, AutoTokenizer
12
+ import torch
13
+
14
+
15
+ # Load a Hugging Face model (e.g., LLaMA or Falcon)
16
+ model_name = "mixedbread-ai/mxbai-embed-2d-large-v1" # Replace with your preferred model
17
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
18
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
19
+
20
+
21
+
22
+ def get_pdf_text(pdf_docs):
23
+ text = ""
24
+ for pdf in pdf_docs:
25
+ pdf_reader = PdfReader(pdf)
26
+ for page in pdf_reader.pages:
27
+ text += page.extract_text()
28
+ return text
29
+
30
+ # chuck_size = 1000, chunk_overlap = 200 (for shorted PDFs)
31
+ def get_text_chunks(text):
32
+ text_splitter= RecursiveCharacterTextSplitter(
33
+ chunk_size=10000,
34
+ chunk_overlap=1000,
35
+ # length_function=len
36
+ )
37
+ chunks=text_splitter.split_text(text)
38
+ return chunks
39
+
40
+ # Converting into Vector data/store (can also be stored)
41
+ def get_vector_store(text_chunks):
42
+ # embeddings = GoogleGenerativeAIEmbeddings(model='embedding-gecko-001')
43
+ # embeddings = GoogleGenerativeAIEmbeddings(model='models/embedding-001')
44
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
45
+ vector_store = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
46
+ vector_store.save_local("faiss_index")
47
+ # return vector_store
48
+
49
+
50
+
51
+ def chat_with_huggingface(context, query):
52
+ prompt_template = """
53
+ Answer the query as detailed as possible from the provided context.
54
+ If the answer is not in the context, just say, "Answer is not available in the provided documents".
55
+ Context: {context}
56
+ Query: {query}
57
+ Answer:
58
+ """
59
+ inputs = tokenizer(prompt_template, return_tensors="pt").to(model.device)
60
+ outputs = model.generate(**inputs, max_length=500, temperature=0.3)
61
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
62
+
63
+ def get_conversation_chain():
64
+ def huggingface_chain(inputs):
65
+ context = inputs["input_documents"][0].page_content # Extract context from FAISS search
66
+ query = inputs["question"]
67
+ return {"output_text": chat_with_huggingface(context, query)}
68
+
69
+ return huggingface_chain
70
+
71
+ def user_input(user_question):
72
+ # embeddings = GoogleGenerativeAIEmbeddings(model='embedding-gecko-001')
73
+ embeddings = GoogleGenerativeAIEmbeddings(model='models/embedding-001')
74
+
75
+ # Loading the embeddings
76
+ new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
77
+ docs = new_db.similarity_search(user_question)
78
+
79
+ chain=get_conversation_chain()
80
+
81
+ response = chain(
82
+ {"input_documents": docs, "question": user_question}
83
+ , return_only_outputs=True)
84
+
85
+ print(response)
86
+ st.write("Reply: ", response["output_text"])
87
+
88
+ # Frontend page Processor
89
+ def main():
90
+ st.set_page_config(page_title="PDF Chatbot")
91
+ st.header("PDF Chatbot made for Pooja")
92
+
93
+ user_question = st.text_input("Puchiye kuch apne documents se:")
94
+
95
+ if user_question:
96
+ user_input(user_question)
97
+
98
+ with st.sidebar:
99
+ st.title("Menu:")
100
+ pdf_docs = st.file_uploader(
101
+ "Apne PDFs yaha pe upload karo then click on 'Process'", accept_multiple_files=True)
102
+ if st.button("Submit & Process"):
103
+ with st.spinner("Ruko Padh raha hu..."):
104
+ raw_text = get_pdf_text(pdf_docs)
105
+ text_chunks = get_text_chunks(raw_text)
106
+ get_vector_store(text_chunks)
107
+ st.success("Saare documents padh liya. Ab swaal pucho 😤")
108
+
109
+
110
+ if __name__ == '__main__':
111
+ main()