File size: 18,089 Bytes
f4c50c8 31521f5 f4c50c8 31521f5 f4c50c8 31521f5 f4c50c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import pickle
import json
import numpy as np
import pandas as pd
from rouge import Rouge
import string
import copy
import re
from transformers import AutoModel, AutoTokenizer
from underthesea import sent_tokenize, word_tokenize
from sklearn.metrics.pairwise import cosine_similarity
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
phobert = AutoModel.from_pretrained("vinai/phobert-base-v2").to(device)
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2")
def getRouge2(ref, pred, kind): # tokenized input
try:
return round(Rouge().get_scores(pred.lower(), ref.lower())[0]['rouge-2'][kind], 4)
except ValueError:
return 0.0
class MLP(nn.Module):
def __init__(self, dims: list, layers=2, act=nn.LeakyReLU(), dropout_p=0.3, keep_last_layer=False):
super(MLP, self).__init__()
assert len(dims) == layers + 1
self.layers = layers
self.act = act
self.dropout = nn.Dropout(dropout_p)
self.keep_last = keep_last_layer
self.mlp_layers = nn.ModuleList([])
for i in range(self.layers):
self.mlp_layers.append(nn.Linear(dims[i], dims[i + 1]))
def forward(self, x):
for i in range(len(self.mlp_layers) - 1):
x = self.dropout(self.act(self.mlp_layers[i](x)))
if self.keep_last:
x = self.mlp_layers[-1](x)
else:
x = self.act(self.mlp_layers[-1](x))
return x
class GraphAttentionLayer(nn.Module):
def __init__(self, in_features: int, out_features: int, n_heads: int,
is_concat: bool = True,
dropout: float = 0.6,
leaky_relu_negative_slope: float = 0.2):
super().__init__()
self.is_concat = is_concat
self.n_heads = n_heads
# Calculate the number of dimensions per head
if is_concat:
assert out_features % n_heads == 0
self.n_hidden = out_features // n_heads
else:
self.n_hidden = out_features
self.linear = nn.Linear(in_features, self.n_hidden * n_heads, bias=False)
self.attn = nn.Linear(self.n_hidden * 2, 1, bias=False)
self.activation = nn.LeakyReLU(negative_slope=leaky_relu_negative_slope)
self.softmax = nn.Softmax(dim=1)
self.dropout = nn.Dropout(dropout)
def forward(self, h: torch.Tensor, adj_mat: torch.Tensor, docnum, secnum):
n_nodes = h.shape[0]
g = self.linear(h).view(n_nodes, self.n_heads, self.n_hidden)
g_repeat = g.repeat(n_nodes, 1, 1)
g_repeat_interleave = g.repeat_interleave(n_nodes, dim=0)
g_concat = torch.cat([g_repeat_interleave, g_repeat], dim=-1)
g_concat = g_concat.view(n_nodes, n_nodes, self.n_heads, 2 * self.n_hidden)
e = self.activation(self.attn(g_concat))
e = e.squeeze(-1)
# The adjacency matrix should have shape
# `[n_nodes, n_nodes, n_heads]` or`[n_nodes, n_nodes, 1]`
assert adj_mat.shape[0] == 1 or adj_mat.shape[0] == n_nodes
assert adj_mat.shape[1] == 1 or adj_mat.shape[1] == n_nodes
assert adj_mat.shape[2] == 1 or adj_mat.shape[2] == self.n_heads
# Mask $e_{ij}$ based on adjacency matrix.
# $e_{ij}$ is set to $- \infty$ if there is no edge from $i$ to $j$.
e = e.masked_fill(adj_mat == 0, float(-1e9))
a = self.softmax(e)
a = self.dropout(a)
attn_res = torch.einsum('ijh,jhf->ihf', a, g)
# Concatenate the heads
if self.is_concat:
return attn_res.reshape(n_nodes, self.n_heads * self.n_hidden)
# Take the mean of the heads
else:
return attn_res.mean(dim=1)
class GAT(nn.Module):
def __init__(self, in_features: int, n_hidden: int, n_classes: int, n_heads: int, dropout: float):
super().__init__()
self.layer1 = GraphAttentionLayer(in_features, n_hidden, n_heads, is_concat=True, dropout=dropout)
self.activation = nn.ELU()
self.output = GraphAttentionLayer(n_hidden, n_classes, 1, is_concat=False, dropout=dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor, adj_mat: torch.Tensor, docnum, secnum):
x = x.squeeze(0)
adj_mat = adj_mat.squeeze(0)
adj_x = adj_mat.clone().sum(dim=1, keepdim=True).repeat(1, x.shape[1]).bool()
adj_mat = adj_mat.unsqueeze(-1).bool()
x = self.dropout(x)
x = self.layer1(x, adj_mat, docnum, secnum)
x = self.activation(x)
x = self.dropout(x)
x = self.output(x, adj_mat, docnum, secnum).masked_fill(adj_x == 0, float(0))
return x.unsqueeze(0)
class StepWiseGraphConvLayer(nn.Module):
def __init__(self, in_dim, hid_dim, dropout_p=0.3, act=nn.LeakyReLU(), nheads=6, iter=1, final="att"):
super().__init__()
self.act = act
self.dropout = nn.Dropout(dropout_p)
self.iter = iter
self.in_dim = in_dim
self.gat = nn.ModuleList([GAT(in_features=in_dim, n_hidden=hid_dim, n_classes=in_dim,
dropout=dropout_p, n_heads=nheads) for _ in range(iter)])
self.gat2 = nn.ModuleList([GAT(in_features=in_dim, n_hidden=hid_dim, n_classes=in_dim,
dropout=dropout_p, n_heads=nheads) for _ in range(iter)])
self.gat3 = nn.ModuleList([GAT(in_features=in_dim, n_hidden=hid_dim, n_classes=in_dim,
dropout=dropout_p, n_heads=nheads) for _ in range(iter)])
self.out_ffn = MLP([in_dim * 3, hid_dim, hid_dim, in_dim], layers=3, dropout_p=dropout_p)
def forward(self, feature, adj, docnum, secnum):
sen_adj = adj.clone()
sen_adj[:, -docnum-secnum-1:, :] = sen_adj[:, :, -docnum-secnum-1:] = 0
sec_adj = adj.clone()
sec_adj[:, :-docnum-secnum-1, :] = sec_adj[:, -docnum-1:, :] = sec_adj[:, :, -docnum-1:] = 0
doc_adj = adj.clone()
doc_adj[:, :-docnum-1, :] = 0
feature_sen = feature.clone()
feature_resi = feature
feature_sen_re = feature_sen.clone()
for i in range(0, self.iter):
feature_sen = self.gat[i](feature_sen, sen_adj, docnum, secnum)
feature_sen = F.layer_norm(feature_sen + feature_sen_re, [self.in_dim])
feature_sec = feature_sen.clone()
feature_sec_re = feature_sec.clone()
for i in range(0, self.iter):
feature_sec = self.gat2[i](feature_sec, sec_adj, docnum, secnum)
feature_sec = F.layer_norm(feature_sec + feature_sec_re, [self.in_dim])
feature_doc = feature_sec.clone()
feature_doc_re = feature_doc.clone()
for i in range(0, self.iter):
feature_doc = self.gat3[i](feature_doc, doc_adj, docnum, secnum)
feature_doc = F.layer_norm(feature_doc + feature_doc_re, [self.in_dim])
feature_sec[:, :-docnum-secnum-1, :] = adj[:, :-docnum-secnum-1, -docnum-secnum-1:-docnum-1] @ feature_sec[:, -docnum-secnum-1:-docnum-1, :]
feature_doc[:, -docnum-secnum-1:-docnum-1, :] = adj[:, -docnum-secnum-1:-docnum-1, -docnum-1:] @ feature_doc[:, -docnum-1:, :]
feature_doc[:, :-docnum-secnum-1, :] = adj[:, :-docnum-secnum-1, -docnum-secnum-1:-docnum-1] @ feature_doc[:, -docnum-secnum-1:-docnum-1, :]
feature = torch.concat([feature_doc, feature_sec, feature_sen], dim=-1)
feature = F.layer_norm(self.out_ffn(feature) + feature_resi, [self.in_dim])
return feature
class Contrast_Encoder(nn.Module):
def __init__(self, input_dim, hidden_dim, heads, act=nn.LeakyReLU(0.1), dropout_p=0.3):
super(Contrast_Encoder, self).__init__()
self.graph_encoder = StepWiseGraphConvLayer(in_dim=input_dim, hid_dim=hidden_dim,
dropout_p=dropout_p, act=act, nheads=heads, iter=1)
self.common_proj_mlp = MLP([input_dim, hidden_dim, input_dim], layers=2, dropout_p=dropout_p, act=act, keep_last_layer=False)
def forward(self, p_gfeature, doc_lens, p_adj, docnum, secnum):
posVec = torch.cat([PositionVec[:l] for l in doc_lens] + [torch.zeros(secnum+docnum+1, 768).float().to(device)], dim=0)
p_gfeature = p_gfeature + posVec.unsqueeze(0)
pg = self.graph_encoder(p_gfeature, p_adj, docnum, secnum)
pg = self.common_proj_mlp(pg)
return pg
class End2End_Encoder(nn.Module):
def __init__(self, input_dim, hidden_dim, heads, act=nn.LeakyReLU(0.1), dropout_p=0.3):
super(End2End_Encoder, self).__init__()
self.graph_encoder = StepWiseGraphConvLayer(in_dim=input_dim, hid_dim=hidden_dim,
dropout_p=dropout_p, act=act, nheads=heads, iter=1)
self.dropout = nn.Dropout(dropout_p)
self.out_proj_layer_mlp = MLP([input_dim, hidden_dim, input_dim], layers=2, dropout_p=dropout_p, act=act, keep_last_layer=False)
self.linear = MLP([input_dim, 1], layers=1, dropout_p=dropout_p, act=act, keep_last_layer=True)
def forward(self, x, doc_lens, adj, docnum, secnum):
x = self.graph_encoder(x, adj, docnum, secnum)
x = x[:, :-docnum-secnum-1, :]
x = self.out_proj_layer_mlp(x)
x = self.linear(x)
return x
def _similarity(h1: torch.Tensor, h2: torch.Tensor):
h1 = F.normalize(h1)
h2 = F.normalize(h2)
return h1 @ h2.t()
class InfoNCE(nn.Module):
def __init__(self, tau):
super(InfoNCE, self).__init__()
self.tau = tau
def forward(self, anchor, sample, pos_mask, neg_mask, *args, **kwargs):
sim = _similarity(anchor, sample) / self.tau
if len(anchor) > 1:
sim, _ = torch.max(sim, dim=0)
exp_sim = torch.exp(sim)
loss = torch.log((exp_sim * pos_mask).sum(dim=1)) - torch.log((exp_sim * (pos_mask + neg_mask)).sum(dim=1))
return -loss.mean()
class Cluster:
def __init__(self, sent_texts, sent_vecs, doc_lens, doc_sec_mask, sec_sen_mask):
assert len(sent_vecs) == len(sent_texts)
self.docnum = len(doc_sec_mask)
self.secnum = len(sec_sen_mask)
self.feature = torch.cat((torch.stack(sent_vecs, dim=0), torch.zeros((self.secnum+self.docnum+1, sent_vecs[0].shape[0]))), dim=0).to(device)
self.adj = torch.from_numpy(self.mask_to_adj(doc_sec_mask, sec_sen_mask)).float().to(device)
self.sent_text = np.array(sent_texts)
self.doc_lens = doc_lens
self.init_node_vec()
self.feature = self.feature.float()
def init_node_vec(self):
docnum, secnum = self.docnum, self.secnum
for i in range(-secnum-docnum-1, -docnum-1):
mask = self.adj[i].clone()
mask[-secnum-docnum-1:] = 0
self.feature[i] = torch.mean(self.feature[mask.bool()], dim=0)
for i in range(-docnum-1, -1):
mask = self.adj[i].clone()
mask[-docnum-1:] = 0
self.feature[i] = torch.mean(self.feature[mask.bool()], dim=0)
self.feature[-1] = torch.mean(self.feature[-docnum-1:-1], dim=0)
def mask_to_adj(self, doc_sec_mask, sec_sen_mask):
sen_num = sec_sen_mask.shape[1]
sec_num = sec_sen_mask.shape[0]
doc_num = doc_sec_mask.shape[0]
adj = np.zeros((sen_num+sec_num+doc_num+1, sen_num+sec_num+doc_num+1))
# section connection
adj[-sec_num-doc_num-1:-doc_num-1, 0:-sec_num-doc_num-1] = sec_sen_mask
adj[0:-sec_num-doc_num-1, -sec_num-doc_num-1:-doc_num-1] = sec_sen_mask.T
for i in range(0, doc_num):
doc_mask = doc_sec_mask[i]
doc_mask = doc_mask.reshape((1, len(doc_mask)))
adj[sen_num:-doc_num-1, sen_num:-doc_num-1] += doc_mask * doc_mask.T
# doc connection
adj[-doc_num-1:-1, -sec_num-doc_num-1:-doc_num-1] = doc_sec_mask
adj[-sec_num-doc_num-1:-doc_num-1, -doc_num-1:-1] = doc_sec_mask.T
adj[-doc_num-1:, -doc_num-1:] = 1
#build sentence connection
for i in range(0, sec_num):
sec_mask = sec_sen_mask[i]
sec_mask = sec_mask.reshape((1, len(sec_mask)))
adj[:sen_num, :sen_num] += sec_mask * sec_mask.T
return adj
def meanTokenVecs(text):
sent = text.lower()
input_ids = torch.tensor([tokenizer.encode(sent)])
tokenized_text = tokenizer.tokenize(sent)
with torch.no_grad():
features = phobert(input_ids)
wordVecs, buffer, buffer_str = {}, [], ''
for token in zip(tokenized_text, features.last_hidden_state[0, 1:-1,:]):
if token[0][-2:] == '@@':
buffer.append(token[1])
buffer_str += token[0][:-2]
continue
if buffer:
buffer.append(token[1])
buffer_str += token[0]
wordVecs[buffer_str] = torch.mean(torch.stack(buffer), dim=0)
buffer, buffer_str = [], ''
else:
wordVecs[token[0]] = token[1]
return torch.mean(torch.stack([vec for w, vec in wordVecs.items() if w not in string.punctuation]), dim=0)
def getPositionEncoding(pos, d=768, n=10000):
P = np.zeros(d)
for i in np.arange(int(d/2)):
denominator = np.power(n, 2*i/d)
P[2*i] = np.sin(pos/denominator)
P[2*i+1] = np.cos(pos/denominator)
return P
PositionVec = torch.stack([torch.from_numpy(getPositionEncoding(i, d=768)) for i in range(200)], dim=0).float().to(device)
stop_w = ['...']
with open('./vietnamese-stopwords-dash.txt', 'r', encoding='utf-8') as f:
for w in f.readlines():
stop_w.append(w.strip())
stop_w.extend([c for c in '!"#$%&\'()*+,./:;<=>?@[\\]^`{|}~…“”’‘'])
with open('./LDA_models.pkl', mode='rb') as fp:
cate_models = pickle.load(fp)
def removeRedundant(text):
text = text.lower()
words = [w for w in text.split(' ') if w not in stop_w]
return ' '.join(words)
def divideSection(doc_text, category):
assert category in cate_models, 'invalid category'
sent_para, para_sec, sent_sec = {}, {}, {}
paras = [para for para in doc_text.split('\n') if para != '']
all_sents = []
# prepare sent_Para
sentcnt = 0
for i, para in enumerate(paras):
sents = [word_tokenize(sent, format="text") for sent in sent_tokenize(para) if sent != '']
all_sents.extend(sents)
for ii, sent in enumerate(sents):
sent_para[sentcnt + ii] = i
sent = removeRedundant(sent)
sentcnt += len(sents)
# prepare para_sec
paras = [removeRedundant(para) for para in paras]
tf, lda_model = cate_models[category]
X = tf.transform(paras)
lda_top = lda_model.transform(X)
for i, para_top in enumerate(lda_top):
para_sec[i] = para_top.argmax()
# output sent_sec
for k, v in sent_para.items():
sent_sec[k] = para_sec[v]
return sent_sec, all_sents
def loadClusterData(docs_org, category): # docs_org: list of text for each document
seclist, docs = {}, []
for d, doc in enumerate(docs_org):
seclist[d], sentTexts = divideSection(doc, category)
docs.append(sentTexts)
secnum = 0
for k, val_dict in seclist.items():
vals = set(val_dict.values())
for ki, vi in val_dict.items():
for i, v in enumerate(vals):
if vi == v:
val_dict[ki] = i + secnum
break
seclist[k] = val_dict
secnum += len(vals)
sents, sentVecs, secIDs, doc_lens = [], [], [], []
sentnum = sum([len(doc.values()) for doc in seclist.values()])
doc_sec_mask = np.zeros((len(docs), secnum))
sec_sen_mask = np.zeros((secnum, sentnum))
cursec, cursent = 0, 0
for d, doc in enumerate(docs):
doc_lens.append(len(doc))
doc_endsec = max(seclist[d].values())
doc_sec_mask[d][cursec:doc_endsec + 1] = 1
cursec = doc_endsec + 1
for s, sent in enumerate(doc):
sents.append(sent)
sentVecs.append(meanTokenVecs(sent))
sec_sen_mask[seclist[d][s], cursent] = 1
cursent += 1
return Cluster(sents, sentVecs, doc_lens, doc_sec_mask, sec_sen_mask)
def val_e2e(data, model, max_word_num=200, c_model=None):
model.eval()
c_model.eval()
feature = data.feature.unsqueeze(0)
doc_lens = data.doc_lens
adj = data.adj.unsqueeze(0)
docnum = data.docnum
secnum = data.secnum
with torch.no_grad():
feature = c_model(feature, doc_lens, adj, docnum, secnum)
x = model(feature, doc_lens, adj, docnum, secnum)
scores = torch.sigmoid(x.squeeze(-1))
return get_summary(scores[0], data.sent_text, max_word_num)
def get_summary(scores, sents, max_word_num=200):
ranked_score_idxs = torch.argsort(scores, dim=0, descending=True)
wordCnt = 0
summSentIDList = []
for i in ranked_score_idxs:
if wordCnt >= max_word_num: break
s = sents[i]
replicated = False
for chosedID in summSentIDList:
if getRouge2(sents[chosedID], s, 'p') >= 0.45:
replicated = True
break
if replicated: continue
wordCnt += len(s.split(' '))
summSentIDList.append(i)
summSentIDList = sorted(summSentIDList)
return ' '.join([s for i, s in enumerate(sents) if i in summSentIDList])
c_model = Contrast_Encoder(768, 1024, 4, dropout_p=0.3).to(device)
model = End2End_Encoder(768, 1024, 4, dropout_p=0.3).to(device)
model.load_state_dict(torch.load('./e_25_0.3071.mdl', map_location=device), strict=False)
c_model.load_state_dict(torch.load('./c_25_0.3071.mdl', map_location=device), strict=False)
def infer(docs, category):
# docs = [text.strip() for text in full_text.split('<><><><><>')]
docs = [text.strip() for text in docs]
data_tree = loadClusterData(docs, category)
summ = val_e2e(data_tree, model, c_model=c_model, max_word_num=200)
summ = re.sub(r'\s+([.,;:"?()/!?])', r'\1', summ.replace('_', ' '))
return summ, docs |