Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,26 @@
|
|
| 1 |
import os
|
| 2 |
import cv2
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
import torch
|
| 6 |
-
import shutil
|
| 7 |
-
import argparse
|
| 8 |
-
import platform
|
| 9 |
-
import datetime
|
| 10 |
-
import subprocess
|
| 11 |
import insightface
|
| 12 |
import onnxruntime
|
| 13 |
-
import
|
| 14 |
-
|
| 15 |
-
import threading
|
| 16 |
-
import queue
|
| 17 |
-
from tqdm import tqdm
|
| 18 |
-
import concurrent.futures
|
| 19 |
-
from moviepy.editor import VideoFileClip
|
| 20 |
-
from PIL import Image
|
| 21 |
-
import io
|
| 22 |
|
| 23 |
from face_swapper import Inswapper, paste_to_whole
|
| 24 |
-
from face_analyser import
|
| 25 |
-
from face_parsing import init_parsing_model, get_parsed_mask
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
## ------------------------------ USER ARGS ------------------------------
|
| 30 |
|
|
@@ -37,44 +33,6 @@ parser.add_argument(
|
|
| 37 |
)
|
| 38 |
user_args = parser.parse_args()
|
| 39 |
|
| 40 |
-
## ------------------------------ DEFAULTS ------------------------------
|
| 41 |
-
|
| 42 |
-
USE_COLAB = user_args.colab
|
| 43 |
-
USE_CUDA = user_args.cuda
|
| 44 |
-
DEF_OUTPUT_PATH = user_args.out_dir
|
| 45 |
-
BATCH_SIZE = int(user_args.batch_size)
|
| 46 |
-
WORKSPACE = None
|
| 47 |
-
OUTPUT_FILE = None
|
| 48 |
-
CURRENT_FRAME = None
|
| 49 |
-
STREAMER = None
|
| 50 |
-
DETECT_CONDITION = "best detection"
|
| 51 |
-
DETECT_SIZE = 640
|
| 52 |
-
DETECT_THRESH = 0.6
|
| 53 |
-
NUM_OF_SRC_SPECIFIC = 10
|
| 54 |
-
MASK_INCLUDE = [
|
| 55 |
-
"Skin",
|
| 56 |
-
"R-Eyebrow",
|
| 57 |
-
"L-Eyebrow",
|
| 58 |
-
"L-Eye",
|
| 59 |
-
"R-Eye",
|
| 60 |
-
"Nose",
|
| 61 |
-
"Mouth",
|
| 62 |
-
"L-Lip",
|
| 63 |
-
"U-Lip"
|
| 64 |
-
]
|
| 65 |
-
MASK_SOFT_KERNEL = 17
|
| 66 |
-
MASK_SOFT_ITERATIONS = 10
|
| 67 |
-
MASK_BLUR_AMOUNT = 0.1
|
| 68 |
-
MASK_ERODE_AMOUNT = 0.15
|
| 69 |
-
|
| 70 |
-
FACE_SWAPPER = None
|
| 71 |
-
FACE_ANALYSER = None
|
| 72 |
-
FACE_ENHANCER = None
|
| 73 |
-
FACE_PARSER = None
|
| 74 |
-
FACE_ENHANCER_LIST = ["NONE"]
|
| 75 |
-
FACE_ENHANCER_LIST.extend(get_available_enhancer_names())
|
| 76 |
-
FACE_ENHANCER_LIST.extend(cv2_interpolations)
|
| 77 |
-
|
| 78 |
## ------------------------------ SET EXECUTION PROVIDER ------------------------------
|
| 79 |
# Note: Non CUDA users may change settings here
|
| 80 |
|
|
@@ -95,8 +53,8 @@ else:
|
|
| 95 |
device = "cuda" if USE_CUDA else "cpu"
|
| 96 |
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
|
| 97 |
|
| 98 |
-
## ------------------------------ LOAD MODELS ------------------------------
|
| 99 |
|
|
|
|
| 100 |
def load_face_analyser_model(name="buffalo_l"):
|
| 101 |
global FACE_ANALYSER
|
| 102 |
if FACE_ANALYSER is None:
|
|
@@ -105,396 +63,80 @@ def load_face_analyser_model(name="buffalo_l"):
|
|
| 105 |
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH
|
| 106 |
)
|
| 107 |
|
| 108 |
-
|
| 109 |
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"):
|
| 110 |
global FACE_SWAPPER
|
| 111 |
if FACE_SWAPPER is None:
|
| 112 |
-
|
| 113 |
-
FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=PROVIDER)
|
| 114 |
-
|
| 115 |
|
| 116 |
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"):
|
| 117 |
global FACE_PARSER
|
| 118 |
if FACE_PARSER is None:
|
| 119 |
-
FACE_PARSER = init_parsing_model(path, device=
|
| 120 |
-
|
| 121 |
|
|
|
|
| 122 |
load_face_analyser_model()
|
| 123 |
load_face_swapper_model()
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
enable_laplacian_blend,
|
| 149 |
-
crop_top,
|
| 150 |
-
crop_bott,
|
| 151 |
-
crop_left,
|
| 152 |
-
crop_right,
|
| 153 |
-
*specifics,
|
| 154 |
-
):
|
| 155 |
-
global WORKSPACE
|
| 156 |
-
global OUTPUT_FILE
|
| 157 |
-
global PREVIEW
|
| 158 |
-
WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None
|
| 159 |
-
|
| 160 |
-
## ------------------------------ GUI UPDATE FUNC ------------------------------
|
| 161 |
-
|
| 162 |
-
def ui_before():
|
| 163 |
-
return (
|
| 164 |
-
gr.update(visible=True, value=PREVIEW),
|
| 165 |
-
gr.update(interactive=False),
|
| 166 |
-
gr.update(interactive=False),
|
| 167 |
-
gr.update(visible=False),
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
def ui_after():
|
| 171 |
-
return (
|
| 172 |
-
gr.update(visible=True, value=PREVIEW),
|
| 173 |
-
gr.update(interactive=True),
|
| 174 |
-
gr.update(interactive=True),
|
| 175 |
-
gr.update(visible=False),
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
def ui_after_vid():
|
| 179 |
-
return (
|
| 180 |
-
gr.update(visible=False),
|
| 181 |
-
gr.update(interactive=True),
|
| 182 |
-
gr.update(interactive=True),
|
| 183 |
-
gr.update(value=OUTPUT_FILE, visible=True),
|
| 184 |
-
)
|
| 185 |
-
|
| 186 |
-
start_time = time.time()
|
| 187 |
-
total_exec_time = lambda start_time: divmod(time.time() - start_time, 60)
|
| 188 |
-
|
| 189 |
-
## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------
|
| 190 |
-
|
| 191 |
-
load_face_analyser_model()
|
| 192 |
-
load_face_swapper_model()
|
| 193 |
-
|
| 194 |
-
if face_enhancer_name != "NONE":
|
| 195 |
-
if face_enhancer_name not in cv2_interpolations:
|
| 196 |
-
FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device)
|
| 197 |
-
else:
|
| 198 |
-
FACE_ENHANCER = None
|
| 199 |
-
|
| 200 |
-
if enable_face_parser:
|
| 201 |
-
load_face_parser_model()
|
| 202 |
-
|
| 203 |
-
includes = mask_regions_to_list(mask_includes)
|
| 204 |
-
specifics = list(specifics)
|
| 205 |
-
half = len(specifics) // 2
|
| 206 |
-
sources = specifics[:half]
|
| 207 |
-
specifics = specifics[half:]
|
| 208 |
-
if crop_top > crop_bott:
|
| 209 |
-
crop_top, crop_bott = crop_bott, crop_top
|
| 210 |
-
if crop_left > crop_right:
|
| 211 |
-
crop_left, crop_right = crop_right, crop_left
|
| 212 |
-
crop_mask = (crop_top, 511-crop_bott, crop_left, 511-crop_right)
|
| 213 |
-
|
| 214 |
-
def swap_process(image_sequence):
|
| 215 |
-
## ------------------------------ CONTENT CHECK ------------------------------
|
| 216 |
-
|
| 217 |
-
if condition != "Specific Face":
|
| 218 |
-
source_data = source_path, age
|
| 219 |
-
else:
|
| 220 |
-
source_data = ((sources, specifics), distance)
|
| 221 |
-
analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data(
|
| 222 |
-
FACE_ANALYSER,
|
| 223 |
-
image_sequence,
|
| 224 |
-
source_data,
|
| 225 |
-
swap_condition=condition,
|
| 226 |
-
detect_condition=DETECT_CONDITION,
|
| 227 |
-
scale=face_scale
|
| 228 |
-
)
|
| 229 |
-
|
| 230 |
-
## ------------------------------ SWAP FUNC ------------------------------
|
| 231 |
-
preds = []
|
| 232 |
-
matrs = []
|
| 233 |
-
count = 0
|
| 234 |
-
for batch_pred, batch_matr in FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources):
|
| 235 |
-
preds.extend(batch_pred)
|
| 236 |
-
matrs.extend(batch_matr)
|
| 237 |
-
EMPTY_CACHE()
|
| 238 |
-
count += 1
|
| 239 |
-
|
| 240 |
-
if USE_CUDA:
|
| 241 |
-
image_grid = create_image_grid(batch_pred, size=128)
|
| 242 |
-
|
| 243 |
-
## ------------------------------ FACE ENHANCEMENT ------------------------------
|
| 244 |
-
|
| 245 |
-
generated_len = len(preds)
|
| 246 |
-
if face_enhancer_name != "NONE":
|
| 247 |
-
for idx, pred in tqdm(enumerate(preds), total=generated_len, desc=f"Upscaling with {face_enhancer_name}"):
|
| 248 |
-
enhancer_model, enhancer_model_runner = FACE_ENHANCER
|
| 249 |
-
pred = enhancer_model_runner(pred, enhancer_model)
|
| 250 |
-
preds[idx] = cv2.resize(pred, (512,512))
|
| 251 |
-
EMPTY_CACHE()
|
| 252 |
-
|
| 253 |
-
## ------------------------------ FACE PARSING ------------------------------
|
| 254 |
-
|
| 255 |
-
if enable_face_parser:
|
| 256 |
-
masks = []
|
| 257 |
-
count = 0
|
| 258 |
-
for batch_mask in get_parsed_mask(FACE_PARSER, preds, classes=includes, device=device, batch_size=BATCH_SIZE, softness=int(mask_soft_iterations)):
|
| 259 |
-
masks.append(batch_mask)
|
| 260 |
-
EMPTY_CACHE()
|
| 261 |
-
count += 1
|
| 262 |
-
|
| 263 |
-
if len(batch_mask) > 1:
|
| 264 |
-
image_grid = create_image_grid(batch_mask, size=128)
|
| 265 |
-
masks = np.concatenate(masks, axis=0) if len(masks) >= 1 else masks
|
| 266 |
-
else:
|
| 267 |
-
masks = [None] * generated_len
|
| 268 |
-
|
| 269 |
-
## ------------------------------ SPLIT LIST ------------------------------
|
| 270 |
-
|
| 271 |
-
split_preds = split_list_by_lengths(preds, num_faces_per_frame)
|
| 272 |
-
del preds
|
| 273 |
-
split_matrs = split_list_by_lengths(matrs, num_faces_per_frame)
|
| 274 |
-
del matrs
|
| 275 |
-
split_masks = split_list_by_lengths(masks, num_faces_per_frame)
|
| 276 |
-
del masks
|
| 277 |
-
|
| 278 |
-
## ------------------------------ PASTE-BACK ------------------------------
|
| 279 |
-
|
| 280 |
-
def post_process(frame_idx, frame_img, split_preds, split_matrs, split_masks, enable_laplacian_blend, crop_mask, blur_amount, erode_amount):
|
| 281 |
-
whole_img_path = frame_img
|
| 282 |
-
whole_img = cv2.imread(whole_img_path)
|
| 283 |
-
blend_method = 'laplacian' if enable_laplacian_blend else 'linear'
|
| 284 |
-
for p, m, mask in zip(split_preds[frame_idx], split_matrs[frame_idx], split_masks[frame_idx]):
|
| 285 |
-
p = cv2.resize(p, (512,512))
|
| 286 |
-
mask = cv2.resize(mask, (512,512)) if mask is not None else None
|
| 287 |
-
m /= 0.25
|
| 288 |
-
whole_img = paste_to_whole(p, whole_img, m, mask=mask, crop_mask=crop_mask, blend_method=blend_method, blur_amount=blur_amount, erode_amount=erode_amount)
|
| 289 |
-
cv2.imwrite(whole_img_path, whole_img)
|
| 290 |
-
|
| 291 |
-
def concurrent_post_process(image_sequence, *args):
|
| 292 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 293 |
-
futures = []
|
| 294 |
-
for idx, frame_img in enumerate(image_sequence):
|
| 295 |
-
future = executor.submit(post_process, idx, frame_img, *args)
|
| 296 |
-
futures.append(future)
|
| 297 |
-
|
| 298 |
-
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Pasting back"):
|
| 299 |
-
result = future.result()
|
| 300 |
-
|
| 301 |
-
concurrent_post_process(
|
| 302 |
-
image_sequence,
|
| 303 |
-
split_preds,
|
| 304 |
-
split_matrs,
|
| 305 |
-
split_masks,
|
| 306 |
-
enable_laplacian_blend,
|
| 307 |
-
crop_mask,
|
| 308 |
-
blur_amount,
|
| 309 |
-
erode_amount
|
| 310 |
-
)
|
| 311 |
-
## ------------------------------ Gardio API ------------------------------
|
| 312 |
-
iface = gr.Interface(
|
| 313 |
-
fn=process_api,
|
| 314 |
-
inputs=[
|
| 315 |
-
gr.Textbox(label="Source Image (base64)"),
|
| 316 |
-
gr.Textbox(label="Target Image (base64)")
|
| 317 |
-
],
|
| 318 |
-
outputs=gr.Textbox(label="Result Image (base64)"),
|
| 319 |
-
title="Face Swap API",
|
| 320 |
-
description="Submit two base64 encoded images to swap faces."
|
| 321 |
-
)
|
| 322 |
-
## ------------------------------ IMAGE ------------------------------
|
| 323 |
-
|
| 324 |
-
if input_type == "Image":
|
| 325 |
-
target = cv2.imread(image_path)
|
| 326 |
-
output_file = os.path.join(output_path, output_name + ".png")
|
| 327 |
-
cv2.imwrite(output_file, target)
|
| 328 |
-
|
| 329 |
-
for info_update in swap_process([output_file]):
|
| 330 |
-
yield info_update
|
| 331 |
-
|
| 332 |
-
OUTPUT_FILE = output_file
|
| 333 |
-
WORKSPACE = output_path
|
| 334 |
-
PREVIEW = cv2.imread(output_file)[:, :, ::-1]
|
| 335 |
-
|
| 336 |
-
yield get_finsh_text(start_time), *ui_after()
|
| 337 |
-
|
| 338 |
-
## ------------------------------ VIDEO ------------------------------
|
| 339 |
-
|
| 340 |
-
elif input_type == "Video":
|
| 341 |
-
temp_path = os.path.join(output_path, output_name, "sequence")
|
| 342 |
-
os.makedirs(temp_path, exist_ok=True)
|
| 343 |
-
|
| 344 |
-
yield "### \n 💽 Extracting video frames...", *ui_before()
|
| 345 |
-
image_sequence = []
|
| 346 |
-
cap = cv2.VideoCapture(video_path)
|
| 347 |
-
curr_idx = 0
|
| 348 |
-
while True:
|
| 349 |
-
ret, frame = cap.read()
|
| 350 |
-
if not ret:break
|
| 351 |
-
frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg")
|
| 352 |
-
cv2.imwrite(frame_path, frame)
|
| 353 |
-
image_sequence.append(frame_path)
|
| 354 |
-
curr_idx += 1
|
| 355 |
-
cap.release()
|
| 356 |
-
cv2.destroyAllWindows()
|
| 357 |
-
|
| 358 |
-
for info_update in swap_process(image_sequence):
|
| 359 |
-
yield info_update
|
| 360 |
-
|
| 361 |
-
yield "### \n 🔗 Merging sequence...", *ui_before()
|
| 362 |
-
output_video_path = os.path.join(output_path, output_name + ".mp4")
|
| 363 |
-
merge_img_sequence_from_ref(video_path, image_sequence, output_video_path)
|
| 364 |
-
|
| 365 |
-
if os.path.exists(temp_path) and not keep_output_sequence:
|
| 366 |
-
yield "### \n 🚽 Removing temporary files...", *ui_before()
|
| 367 |
-
shutil.rmtree(temp_path)
|
| 368 |
-
|
| 369 |
-
WORKSPACE = output_path
|
| 370 |
-
OUTPUT_FILE = output_video_path
|
| 371 |
-
|
| 372 |
-
yield get_finsh_text(start_time), *ui_after_vid()
|
| 373 |
-
|
| 374 |
-
## ------------------------------ DIRECTORY ------------------------------
|
| 375 |
-
|
| 376 |
-
elif input_type == "Directory":
|
| 377 |
-
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"]
|
| 378 |
-
temp_path = os.path.join(output_path, output_name)
|
| 379 |
-
if os.path.exists(temp_path):
|
| 380 |
-
shutil.rmtree(temp_path)
|
| 381 |
-
os.mkdir(temp_path)
|
| 382 |
-
|
| 383 |
-
file_paths =[]
|
| 384 |
-
for file_path in glob.glob(os.path.join(directory_path, "*")):
|
| 385 |
-
if any(file_path.lower().endswith(ext) for ext in extensions):
|
| 386 |
-
img = cv2.imread(file_path)
|
| 387 |
-
new_file_path = os.path.join(temp_path, os.path.basename(file_path))
|
| 388 |
-
cv2.imwrite(new_file_path, img)
|
| 389 |
-
file_paths.append(new_file_path)
|
| 390 |
-
|
| 391 |
-
for info_update in swap_process(file_paths):
|
| 392 |
-
yield info_update
|
| 393 |
-
|
| 394 |
-
WORKSPACE = temp_path
|
| 395 |
-
OUTPUT_FILE = file_paths[-1]
|
| 396 |
-
|
| 397 |
-
## ------------------------------ STREAM ------------------------------
|
| 398 |
-
|
| 399 |
-
elif input_type == "Stream":
|
| 400 |
-
pass
|
| 401 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
-
|
|
|
|
| 404 |
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
global DETECT_CONDITION
|
| 408 |
-
DETECT_CONDITION = detect_condition
|
| 409 |
-
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER)
|
| 410 |
-
FACE_ANALYSER.prepare(
|
| 411 |
-
ctx_id=0,
|
| 412 |
-
det_size=(int(detection_size), int(detection_size)),
|
| 413 |
-
det_thresh=float(detection_threshold),
|
| 414 |
-
)
|
| 415 |
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
img = Image.open(io.BytesIO(img_data))
|
| 419 |
-
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 420 |
|
| 421 |
-
def process_api(source_base64, target_base64):
|
| 422 |
-
source_image = decode_base64_image(source_base64)
|
| 423 |
-
target_image = decode_base64_image(target_base64)
|
| 424 |
-
|
| 425 |
-
temp_source_path = "temp_source.jpg"
|
| 426 |
-
temp_target_path = "temp_target.jpg"
|
| 427 |
-
cv2.imwrite(temp_source_path, source_image)
|
| 428 |
-
cv2.imwrite(temp_target_path, target_image)
|
| 429 |
-
|
| 430 |
-
result = process(
|
| 431 |
-
input_type="Image",
|
| 432 |
-
image_path=temp_target_path,
|
| 433 |
-
video_path=None,
|
| 434 |
-
directory_path=None,
|
| 435 |
-
source_path=temp_source_path,
|
| 436 |
-
output_path="output",
|
| 437 |
-
output_name="result",
|
| 438 |
-
keep_output_sequence=False,
|
| 439 |
-
condition="First found face",
|
| 440 |
-
age=None,
|
| 441 |
-
distance=None,
|
| 442 |
-
face_enhancer_name="NONE",
|
| 443 |
-
enable_face_parser=False,
|
| 444 |
-
mask_includes=MASK_INCLUDE,
|
| 445 |
-
mask_soft_kernel=MASK_SOFT_KERNEL,
|
| 446 |
-
mask_soft_iterations=MASK_SOFT_ITERATIONS,
|
| 447 |
-
blur_amount=MASK_BLUR_AMOUNT,
|
| 448 |
-
erode_amount=MASK_ERODE_AMOUNT,
|
| 449 |
-
face_scale=1.0,
|
| 450 |
-
enable_laplacian_blend=True,
|
| 451 |
-
crop_top,
|
| 452 |
-
crop_bott,
|
| 453 |
-
crop_left,
|
| 454 |
-
crop_right,
|
| 455 |
-
)
|
| 456 |
-
|
| 457 |
-
os.remove(temp_source_path)
|
| 458 |
-
os.remove(temp_target_path)
|
| 459 |
-
|
| 460 |
-
result_image = cv2.imread("output/result.png")
|
| 461 |
-
_, buffer = cv2.imencode('.jpg', result_image)
|
| 462 |
-
result_base64 = base64.b64encode(buffer).decode('utf-8')
|
| 463 |
-
|
| 464 |
return result_base64
|
| 465 |
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
if hasattr(STREAMER, "stop"):
|
| 469 |
-
STREAMER.stop()
|
| 470 |
-
STREAMER = None
|
| 471 |
-
return "Cancelled"
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
def slider_changed(show_frame, video_path, frame_index):
|
| 475 |
-
if not show_frame:
|
| 476 |
-
return None, None
|
| 477 |
-
if video_path is None:
|
| 478 |
-
return None, None
|
| 479 |
-
clip = VideoFileClip(video_path)
|
| 480 |
-
frame = clip.get_frame(frame_index / clip.fps)
|
| 481 |
-
frame_array = np.array(frame)
|
| 482 |
-
clip.close()
|
| 483 |
-
return gr.Image.update(value=frame_array, visible=True), gr.Video.update(
|
| 484 |
-
visible=False
|
| 485 |
-
)
|
| 486 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
|
| 488 |
-
|
|
|
|
| 489 |
try:
|
| 490 |
-
|
| 491 |
-
|
| 492 |
except Exception as e:
|
| 493 |
-
|
| 494 |
-
|
| 495 |
|
|
|
|
| 496 |
if __name__ == "__main__":
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
iface.queue(concurrency_count=2, max_size=20).launch(share=USE_COLAB)
|
|
|
|
| 1 |
import os
|
| 2 |
import cv2
|
| 3 |
+
import base64
|
| 4 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import insightface
|
| 6 |
import onnxruntime
|
| 7 |
+
from fastapi import FastAPI, HTTPException
|
| 8 |
+
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
from face_swapper import Inswapper, paste_to_whole
|
| 11 |
+
from face_analyser import get_analysed_data
|
| 12 |
+
from face_parsing import init_parsing_model, get_parsed_mask
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Глобальные константы и переменные
|
| 16 |
+
USE_COLAB = user_args.colab
|
| 17 |
+
USE_CUDA = user_args.cuda
|
| 18 |
+
PROVIDER = ["CPUExecutionProvider"]
|
| 19 |
+
DETECT_SIZE = 640
|
| 20 |
+
DETECT_THRESH = 0.6
|
| 21 |
+
FACE_ANALYSER = None
|
| 22 |
+
FACE_SWAPPER = None
|
| 23 |
+
FACE_PARSER = None
|
| 24 |
|
| 25 |
## ------------------------------ USER ARGS ------------------------------
|
| 26 |
|
|
|
|
| 33 |
)
|
| 34 |
user_args = parser.parse_args()
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
## ------------------------------ SET EXECUTION PROVIDER ------------------------------
|
| 37 |
# Note: Non CUDA users may change settings here
|
| 38 |
|
|
|
|
| 53 |
device = "cuda" if USE_CUDA else "cpu"
|
| 54 |
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
|
| 55 |
|
|
|
|
| 56 |
|
| 57 |
+
# Функции загрузки моделей
|
| 58 |
def load_face_analyser_model(name="buffalo_l"):
|
| 59 |
global FACE_ANALYSER
|
| 60 |
if FACE_ANALYSER is None:
|
|
|
|
| 63 |
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH
|
| 64 |
)
|
| 65 |
|
|
|
|
| 66 |
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"):
|
| 67 |
global FACE_SWAPPER
|
| 68 |
if FACE_SWAPPER is None:
|
| 69 |
+
FACE_SWAPPER = Inswapper(model_file=path, batch_size=1, providers=PROVIDER)
|
|
|
|
|
|
|
| 70 |
|
| 71 |
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"):
|
| 72 |
global FACE_PARSER
|
| 73 |
if FACE_PARSER is None:
|
| 74 |
+
FACE_PARSER = init_parsing_model(path, device='cpu')
|
|
|
|
| 75 |
|
| 76 |
+
# Загрузка всех моделей
|
| 77 |
load_face_analyser_model()
|
| 78 |
load_face_swapper_model()
|
| 79 |
+
load_face_parser_model()
|
| 80 |
|
| 81 |
+
def base64_to_image(base64_string):
|
| 82 |
+
img_data = base64.b64decode(base64_string)
|
| 83 |
+
nparr = np.frombuffer(img_data, np.uint8)
|
| 84 |
+
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
| 85 |
+
return img
|
| 86 |
+
|
| 87 |
+
def image_to_base64(image):
|
| 88 |
+
_, buffer = cv2.imencode('.png', image)
|
| 89 |
+
return base64.b64encode(buffer).decode('utf-8')
|
| 90 |
+
|
| 91 |
+
def process_images(source_img_base64, target_img_base64):
|
| 92 |
+
# Декодирование base64 в изображения
|
| 93 |
+
source_img = base64_to_image(source_img_base64)
|
| 94 |
+
target_img = base64_to_image(target_img_base64)
|
| 95 |
+
|
| 96 |
+
# Анализ лиц
|
| 97 |
+
analysed_targets, analysed_sources, _, _ = get_analysed_data(
|
| 98 |
+
FACE_ANALYSER,
|
| 99 |
+
[target_img],
|
| 100 |
+
source_img,
|
| 101 |
+
swap_condition="First",
|
| 102 |
+
detect_condition="best detection"
|
| 103 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
# Замена лица
|
| 106 |
+
preds = []
|
| 107 |
+
matrs = []
|
| 108 |
+
for batch_pred, batch_matr in FACE_SWAPPER.batch_forward([target_img], analysed_targets, analysed_sources):
|
| 109 |
+
preds.extend(batch_pred)
|
| 110 |
+
matrs.extend(batch_matr)
|
| 111 |
|
| 112 |
+
# Парсинг лица и создание маски
|
| 113 |
+
masks = get_parsed_mask(FACE_PARSER, preds, classes=["skin", "l_brow", "r_brow", "l_eye", "r_eye", "nose", "u_lip", "l_lip", "mouth"], device='cpu')
|
| 114 |
|
| 115 |
+
# Наложение результата обратно на изображение
|
| 116 |
+
result_img = paste_to_whole(preds[0], target_img, matrs[0], mask=masks[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
# Кодирование результата в base64
|
| 119 |
+
result_base64 = image_to_base64(result_img)
|
|
|
|
|
|
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
return result_base64
|
| 122 |
|
| 123 |
+
# Создание FastAPI приложения
|
| 124 |
+
app = FastAPI(title="Faceswap API", description="API для замены лица. Отправьте два изображения в формате base64.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
# Определение модели запроса
|
| 127 |
+
class SwapRequest(BaseModel):
|
| 128 |
+
source_img: str
|
| 129 |
+
target_img: str
|
| 130 |
|
| 131 |
+
@app.post("/swap_face")
|
| 132 |
+
async def swap_face(request: SwapRequest):
|
| 133 |
try:
|
| 134 |
+
result = process_images(request.source_img, request.target_img)
|
| 135 |
+
return {"result": result}
|
| 136 |
except Exception as e:
|
| 137 |
+
raise HTTPException(status_code=400, detail=str(e))
|
|
|
|
| 138 |
|
| 139 |
+
# Запуск сервера
|
| 140 |
if __name__ == "__main__":
|
| 141 |
+
import uvicorn
|
| 142 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|