File size: 16,945 Bytes
133a8d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37923f7
 
133a8d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37923f7
 
 
 
 
 
 
 
 
 
 
133a8d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37923f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133a8d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37923f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import os
import cv2
import glob
import time
import torch
import shutil
import argparse
import platform
import datetime
import subprocess
import insightface
import onnxruntime
import numpy as np
import gradio as gr
import threading
import queue
from tqdm import tqdm
import concurrent.futures
from moviepy.editor import VideoFileClip
from PIL import Image
import io

from face_swapper import Inswapper, paste_to_whole
from face_analyser import detect_conditions, get_analysed_data, swap_options_list
from face_parsing import init_parsing_model, get_parsed_mask, mask_regions, mask_regions_to_list
from face_enhancer import get_available_enhancer_names, load_face_enhancer_model, cv2_interpolations
from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref, create_image_grid

## ------------------------------ USER ARGS ------------------------------

parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper")
parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd())
parser.add_argument("--batch_size", help="Gpu batch size", default=32)
parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False)
parser.add_argument(
    "--colab", action="store_true", help="Enable colab mode", default=False
)
user_args = parser.parse_args()

## ------------------------------ DEFAULTS ------------------------------

USE_COLAB = user_args.colab
USE_CUDA = user_args.cuda
DEF_OUTPUT_PATH = user_args.out_dir
BATCH_SIZE = int(user_args.batch_size)
WORKSPACE = None
OUTPUT_FILE = None
CURRENT_FRAME = None
STREAMER = None
DETECT_CONDITION = "best detection"
DETECT_SIZE = 640
DETECT_THRESH = 0.6
NUM_OF_SRC_SPECIFIC = 10
MASK_INCLUDE = [
    "Skin",
    "R-Eyebrow",
    "L-Eyebrow",
    "L-Eye",
    "R-Eye",
    "Nose",
    "Mouth",
    "L-Lip",
    "U-Lip"
]
MASK_SOFT_KERNEL = 17
MASK_SOFT_ITERATIONS = 10
MASK_BLUR_AMOUNT = 0.1
MASK_ERODE_AMOUNT = 0.15

FACE_SWAPPER = None
FACE_ANALYSER = None
FACE_ENHANCER = None
FACE_PARSER = None
FACE_ENHANCER_LIST = ["NONE"]
FACE_ENHANCER_LIST.extend(get_available_enhancer_names())
FACE_ENHANCER_LIST.extend(cv2_interpolations)

## ------------------------------ SET EXECUTION PROVIDER ------------------------------
# Note: Non CUDA users may change settings here

PROVIDER = ["CPUExecutionProvider"]

if USE_CUDA:
    available_providers = onnxruntime.get_available_providers()
    if "CUDAExecutionProvider" in available_providers:
        print("\n********** Running on CUDA **********\n")
        PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"]
    else:
        USE_CUDA = False
        print("\n********** CUDA unavailable running on CPU **********\n")
else:
    USE_CUDA = False
    print("\n********** Running on CPU **********\n")

device = "cuda" if USE_CUDA else "cpu"
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None

## ------------------------------ LOAD MODELS ------------------------------

def load_face_analyser_model(name="buffalo_l"):
    global FACE_ANALYSER
    if FACE_ANALYSER is None:
        FACE_ANALYSER = insightface.app.FaceAnalysis(name=name, providers=PROVIDER)
        FACE_ANALYSER.prepare(
            ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH
        )


def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"):
    global FACE_SWAPPER
    if FACE_SWAPPER is None:
        batch = int(BATCH_SIZE) if device == "cuda" else 1
        FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=PROVIDER)


def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"):
    global FACE_PARSER
    if FACE_PARSER is None:
        FACE_PARSER = init_parsing_model(path, device=device)


load_face_analyser_model()
load_face_swapper_model()

## ------------------------------ MAIN PROCESS ------------------------------


def process(
    input_type,
    image_path,
    video_path,
    directory_path,
    source_path,
    output_path,
    output_name,
    keep_output_sequence,
    condition,
    age,
    distance,
    face_enhancer_name,
    enable_face_parser,
    mask_includes,
    mask_soft_kernel,
    mask_soft_iterations,
    blur_amount,
    erode_amount,
    face_scale,
    enable_laplacian_blend,
    crop_top,
    crop_bott,
    crop_left,
    crop_right,
    *specifics,
):
    global WORKSPACE
    global OUTPUT_FILE
    global PREVIEW
    WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None

    ## ------------------------------ GUI UPDATE FUNC ------------------------------

    def ui_before():
        return (
            gr.update(visible=True, value=PREVIEW),
            gr.update(interactive=False),
            gr.update(interactive=False),
            gr.update(visible=False),
        )

    def ui_after():
        return (
            gr.update(visible=True, value=PREVIEW),
            gr.update(interactive=True),
            gr.update(interactive=True),
            gr.update(visible=False),
        )

    def ui_after_vid():
        return (
            gr.update(visible=False),
            gr.update(interactive=True),
            gr.update(interactive=True),
            gr.update(value=OUTPUT_FILE, visible=True),
        )

    start_time = time.time()
    total_exec_time = lambda start_time: divmod(time.time() - start_time, 60)

    ## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------

    load_face_analyser_model()
    load_face_swapper_model()

    if face_enhancer_name != "NONE":
        if face_enhancer_name not in cv2_interpolations:
        FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device)
    else:
        FACE_ENHANCER = None

    if enable_face_parser:
        load_face_parser_model()

    includes = mask_regions_to_list(mask_includes)
    specifics = list(specifics)
    half = len(specifics) // 2
    sources = specifics[:half]
    specifics = specifics[half:]
    if crop_top > crop_bott:
        crop_top, crop_bott = crop_bott, crop_top
    if crop_left > crop_right:
        crop_left, crop_right = crop_right, crop_left
    crop_mask = (crop_top, 511-crop_bott, crop_left, 511-crop_right)

    def swap_process(image_sequence):
        ## ------------------------------ CONTENT CHECK ------------------------------

        if condition != "Specific Face":
            source_data = source_path, age
        else:
            source_data = ((sources, specifics), distance)
        analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data(
            FACE_ANALYSER,
            image_sequence,
            source_data,
            swap_condition=condition,
            detect_condition=DETECT_CONDITION,
            scale=face_scale
        )

        ## ------------------------------ SWAP FUNC ------------------------------
        preds = []
        matrs = []
        count = 0
        for batch_pred, batch_matr in FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources):
            preds.extend(batch_pred)
            matrs.extend(batch_matr)
            EMPTY_CACHE()
            count += 1

            if USE_CUDA:
                image_grid = create_image_grid(batch_pred, size=128)

        ## ------------------------------ FACE ENHANCEMENT ------------------------------

        generated_len = len(preds)
        if face_enhancer_name != "NONE":
            for idx, pred in tqdm(enumerate(preds), total=generated_len, desc=f"Upscaling with {face_enhancer_name}"):
                enhancer_model, enhancer_model_runner = FACE_ENHANCER
                pred = enhancer_model_runner(pred, enhancer_model)
                preds[idx] = cv2.resize(pred, (512,512))
        EMPTY_CACHE()

        ## ------------------------------ FACE PARSING ------------------------------

        if enable_face_parser:
            masks = []
            count = 0
            for batch_mask in get_parsed_mask(FACE_PARSER, preds, classes=includes, device=device, batch_size=BATCH_SIZE, softness=int(mask_soft_iterations)):
                masks.append(batch_mask)
                EMPTY_CACHE()
                count += 1

                if len(batch_mask) > 1:
                    image_grid = create_image_grid(batch_mask, size=128)
            masks = np.concatenate(masks, axis=0) if len(masks) >= 1 else masks
        else:
            masks = [None] * generated_len

        ## ------------------------------ SPLIT LIST ------------------------------

        split_preds = split_list_by_lengths(preds, num_faces_per_frame)
        del preds
        split_matrs = split_list_by_lengths(matrs, num_faces_per_frame)
        del matrs
        split_masks = split_list_by_lengths(masks, num_faces_per_frame)
        del masks

        ## ------------------------------ PASTE-BACK ------------------------------

        def post_process(frame_idx, frame_img, split_preds, split_matrs, split_masks, enable_laplacian_blend, crop_mask, blur_amount, erode_amount):
            whole_img_path = frame_img
            whole_img = cv2.imread(whole_img_path)
            blend_method = 'laplacian' if enable_laplacian_blend else 'linear'
            for p, m, mask in zip(split_preds[frame_idx], split_matrs[frame_idx], split_masks[frame_idx]):
                p = cv2.resize(p, (512,512))
                mask = cv2.resize(mask, (512,512)) if mask is not None else None
                m /= 0.25
                whole_img = paste_to_whole(p, whole_img, m, mask=mask, crop_mask=crop_mask, blend_method=blend_method, blur_amount=blur_amount, erode_amount=erode_amount)
            cv2.imwrite(whole_img_path, whole_img)

        def concurrent_post_process(image_sequence, *args):
            with concurrent.futures.ThreadPoolExecutor() as executor:
                futures = []
                for idx, frame_img in enumerate(image_sequence):
                    future = executor.submit(post_process, idx, frame_img, *args)
                    futures.append(future)

                for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Pasting back"):
                    result = future.result()

        concurrent_post_process(
            image_sequence,
            split_preds,
            split_matrs,
            split_masks,
            enable_laplacian_blend,
            crop_mask,
            blur_amount,
            erode_amount
        )
    ## ------------------------------ Gardio API ------------------------------
        iface = gr.Interface(
            fn=process_api,
            inputs=[
                gr.Textbox(label="Source Image (base64)"),
                gr.Textbox(label="Target Image (base64)")
            ],
            outputs=gr.Textbox(label="Result Image (base64)"),
            title="Face Swap API",
            description="Submit two base64 encoded images to swap faces."
        )
    ## ------------------------------ IMAGE ------------------------------

    if input_type == "Image":
        target = cv2.imread(image_path)
        output_file = os.path.join(output_path, output_name + ".png")
        cv2.imwrite(output_file, target)

        for info_update in swap_process([output_file]):
            yield info_update

        OUTPUT_FILE = output_file
        WORKSPACE = output_path
        PREVIEW = cv2.imread(output_file)[:, :, ::-1]

        yield get_finsh_text(start_time), *ui_after()

    ## ------------------------------ VIDEO ------------------------------

    elif input_type == "Video":
        temp_path = os.path.join(output_path, output_name, "sequence")
        os.makedirs(temp_path, exist_ok=True)

        yield "### \n 💽 Extracting video frames...", *ui_before()
        image_sequence = []
        cap = cv2.VideoCapture(video_path)
        curr_idx = 0
        while True:
            ret, frame = cap.read()
            if not ret:break
            frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg")
            cv2.imwrite(frame_path, frame)
            image_sequence.append(frame_path)
            curr_idx += 1
        cap.release()
        cv2.destroyAllWindows()

        for info_update in swap_process(image_sequence):
            yield info_update

        yield "### \n 🔗 Merging sequence...", *ui_before()
        output_video_path = os.path.join(output_path, output_name + ".mp4")
        merge_img_sequence_from_ref(video_path, image_sequence, output_video_path)

        if os.path.exists(temp_path) and not keep_output_sequence:
            yield "### \n 🚽 Removing temporary files...", *ui_before()
            shutil.rmtree(temp_path)

        WORKSPACE = output_path
        OUTPUT_FILE = output_video_path

        yield get_finsh_text(start_time), *ui_after_vid()

    ## ------------------------------ DIRECTORY ------------------------------

    elif input_type == "Directory":
        extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"]
        temp_path = os.path.join(output_path, output_name)
        if os.path.exists(temp_path):
            shutil.rmtree(temp_path)
        os.mkdir(temp_path)

        file_paths =[]
        for file_path in glob.glob(os.path.join(directory_path, "*")):
            if any(file_path.lower().endswith(ext) for ext in extensions):
                img = cv2.imread(file_path)
                new_file_path = os.path.join(temp_path, os.path.basename(file_path))
                cv2.imwrite(new_file_path, img)
                file_paths.append(new_file_path)

        for info_update in swap_process(file_paths):
            yield info_update

        WORKSPACE = temp_path
        OUTPUT_FILE = file_paths[-1]

    ## ------------------------------ STREAM ------------------------------

    elif input_type == "Stream":
        pass


## ------------------------------ GRADIO FUNC ------------------------------

def analyse_settings_changed(detect_condition, detection_size, detection_threshold):
    global FACE_ANALYSER
    global DETECT_CONDITION
    DETECT_CONDITION = detect_condition
    FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER)
    FACE_ANALYSER.prepare(
        ctx_id=0,
        det_size=(int(detection_size), int(detection_size)),
        det_thresh=float(detection_threshold),
    )

def decode_base64_image(base64_string):
    img_data = base64.b64decode(base64_string)
    img = Image.open(io.BytesIO(img_data))
    return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

def process_api(source_base64, target_base64):
    source_image = decode_base64_image(source_base64)
    target_image = decode_base64_image(target_base64)
    
    temp_source_path = "temp_source.jpg"
    temp_target_path = "temp_target.jpg"
    cv2.imwrite(temp_source_path, source_image)
    cv2.imwrite(temp_target_path, target_image)
    
    result = process(
        input_type="Image",
        image_path=temp_target_path,
        video_path=None,
        directory_path=None,
        source_path=temp_source_path,
        output_path="output",
        output_name="result",
        keep_output_sequence=False,
        condition="First found face",
        age=None,
        distance=None,
        face_enhancer_name="NONE",
        enable_face_parser=False,
        mask_includes=MASK_INCLUDE,
        mask_soft_kernel=MASK_SOFT_KERNEL,
        mask_soft_iterations=MASK_SOFT_ITERATIONS,
        blur_amount=MASK_BLUR_AMOUNT,
        erode_amount=MASK_ERODE_AMOUNT,
        face_scale=1.0,
        enable_laplacian_blend=True,
        crop_top,
        crop_bott,
        crop_left,
        crop_right,
    )
    
    os.remove(temp_source_path)
    os.remove(temp_target_path)
    
    result_image = cv2.imread("output/result.png")
    _, buffer = cv2.imencode('.jpg', result_image)
    result_base64 = base64.b64encode(buffer).decode('utf-8')
    
    return result_base64

def stop_running():
    global STREAMER
    if hasattr(STREAMER, "stop"):
        STREAMER.stop()
        STREAMER = None
    return "Cancelled"


def slider_changed(show_frame, video_path, frame_index):
    if not show_frame:
        return None, None
    if video_path is None:
        return None, None
    clip = VideoFileClip(video_path)
    frame = clip.get_frame(frame_index / clip.fps)
    frame_array = np.array(frame)
    clip.close()
    return gr.Image.update(value=frame_array, visible=True), gr.Video.update(
        visible=False
    )


def trim_and_reload(video_path, output_path, output_name, start_frame, stop_frame):
    try:
        output_path = os.path.join(output_path, output_name)
        trimmed_video = trim_video(video_path, output_path, start_frame, stop_frame)
    except Exception as e:
        print(e)


if __name__ == "__main__":
    if USE_COLAB:
        print("Running in colab mode")

        iface.queue(concurrency_count=2, max_size=20).launch(share=USE_COLAB)