Spaces:
Sleeping
Sleeping
Updated app
Browse files
app.py
CHANGED
@@ -26,28 +26,29 @@ warnings.filterwarnings("ignore")
|
|
26 |
|
27 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
resnet
|
44 |
-
|
45 |
-
|
46 |
-
preprocess
|
47 |
-
transforms.
|
48 |
-
|
49 |
-
|
50 |
-
])
|
|
|
51 |
|
52 |
def extract_features(img):
|
53 |
img = img.convert('RGB')
|
@@ -66,7 +67,10 @@ def extract_features(img):
|
|
66 |
with open("models/svr.p", "rb") as f:
|
67 |
lr = pickle.load(f)
|
68 |
|
69 |
-
|
|
|
|
|
|
|
70 |
|
71 |
if img_file_buffer is not None:
|
72 |
# To read image file buffer as a PIL Image:
|
@@ -76,5 +80,5 @@ if img_file_buffer is not None:
|
|
76 |
st.image(detected_image, caption="Detected Face")
|
77 |
|
78 |
embeddings = extract_features(img)
|
79 |
-
bmi = round(lr.predict([embeddings])[0], 2) - 4
|
80 |
st.write(f"Your BMI is {bmi}")
|
|
|
26 |
|
27 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
28 |
|
29 |
+
with st.spinner('Loading the models...'):
|
30 |
+
# If required, create a face detection pipeline using MTCNN:
|
31 |
+
mtcnn = MTCNN(
|
32 |
+
image_size=160, margin=40, min_face_size=20,
|
33 |
+
thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True,
|
34 |
+
device=device
|
35 |
+
)
|
36 |
+
|
37 |
+
mtcnn2 = MTCNN(
|
38 |
+
image_size=160, margin=40, min_face_size=20,
|
39 |
+
thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=False,
|
40 |
+
device=device
|
41 |
+
)
|
42 |
+
|
43 |
+
# Create an inception resnet (in eval mode):
|
44 |
+
resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device)
|
45 |
+
|
46 |
+
# Define the transformation to preprocess the images
|
47 |
+
preprocess = transforms.Compose([
|
48 |
+
transforms.Resize((160, 160)),
|
49 |
+
transforms.ToTensor(),
|
50 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
51 |
+
])
|
52 |
|
53 |
def extract_features(img):
|
54 |
img = img.convert('RGB')
|
|
|
67 |
with open("models/svr.p", "rb") as f:
|
68 |
lr = pickle.load(f)
|
69 |
|
70 |
+
st.markdown("<center><h1>Know Your BMI</h1></center>", unsafe_allow_html=True)
|
71 |
+
st.caption("<center>Click a photo and the underlying Machine Learning model will predict your BMI</center>", unsafe_allow_html=True)
|
72 |
+
|
73 |
+
img_file_buffer = st.camera_input("Click a photo and the underlying Machine Learning model will predict your BMI", label_visibility="hidden")
|
74 |
|
75 |
if img_file_buffer is not None:
|
76 |
# To read image file buffer as a PIL Image:
|
|
|
80 |
st.image(detected_image, caption="Detected Face")
|
81 |
|
82 |
embeddings = extract_features(img)
|
83 |
+
bmi = round(lr.predict([embeddings])[0], 2) - 4
|
84 |
st.write(f"Your BMI is {bmi}")
|