import gradio as gr from transformers import pipeline # Load the face emotion recognition model emotion_classifier = pipeline("image-classification", model="dima806/facial_emotions_image_detection") def detect_emotion(image): # Perform emotion detection results = emotion_classifier(image) # Format and return the results return {result["label"]: f"{result['score']:.4f}" for result in results} # Create the Gradio interface demo = gr.Interface( fn=detect_emotion, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=7), title="Facial Expression Recognition", description="Upload an image with a face to detect the emotion/expression. The model can recognize: anger, disgust, fear, happiness, neutral, sadness, and surprise." ) # Launch the app if __name__ == "__main__": demo.launch()