Spaces:
Sleeping
Sleeping
File size: 845 Bytes
36ee343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import gradio as gr
from transformers import pipeline
# Load the face emotion recognition model
emotion_classifier = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
def detect_emotion(image):
# Perform emotion detection
results = emotion_classifier(image)
# Format and return the results
return {result["label"]: f"{result['score']:.4f}" for result in results}
# Create the Gradio interface
demo = gr.Interface(
fn=detect_emotion,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=7),
title="Facial Expression Recognition",
description="Upload an image with a face to detect the emotion/expression. The model can recognize: anger, disgust, fear, happiness, neutral, sadness, and surprise."
)
# Launch the app
if __name__ == "__main__":
demo.launch()
|