from flask import Flask, request, render_template import pandas as pd import spacy from transformers import pipeline # Initialize Flask app app = Flask(__name__) # Load spaCy model for preprocessing nlp = spacy.load("en_core_web_sm") # Load Hugging Face pipelines sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", aggregation_strategy="simple") # Function to preprocess text def preprocess_text(text): doc = nlp(text) tokens = [token.lemma_.lower() for token in doc if not token.is_stop and not token.is_punct] return ' '.join(tokens) @app.route('/') def home(): return render_template('index.html') @app.route('/analyze', methods=['POST']) def analyze(): if request.method == 'POST': comments = request.form['comments'] cleaned_comments = preprocess_text(comments) # Analyze sentiment sentiment_result = sentiment_pipeline(cleaned_comments)[0] # Analyze entities entities_result = ner_pipeline(cleaned_comments) # Prepare results for rendering result = { 'original_comment': comments, 'cleaned_comment': cleaned_comments, 'sentiment': sentiment_result, 'entities': entities_result } return render_template('result.html', result=result) if __name__ == '__main__': app.run(debug=True)