Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,22 @@
|
|
1 |
from flask import Flask, request, render_template
|
2 |
import pandas as pd
|
3 |
-
import
|
|
|
|
|
|
|
4 |
from transformers import pipeline
|
5 |
|
6 |
# Initialize Flask app
|
7 |
app = Flask(__name__)
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load Hugging Face pipelines
|
13 |
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
@@ -15,9 +24,11 @@ ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-e
|
|
15 |
|
16 |
# Function to preprocess text
|
17 |
def preprocess_text(text):
|
18 |
-
|
19 |
-
tokens =
|
20 |
-
|
|
|
|
|
21 |
|
22 |
@app.route('/')
|
23 |
def home():
|
|
|
1 |
from flask import Flask, request, render_template
|
2 |
import pandas as pd
|
3 |
+
import nltk
|
4 |
+
from nltk.tokenize import word_tokenize
|
5 |
+
from nltk.corpus import stopwords
|
6 |
+
from nltk.stem import WordNetLemmatizer
|
7 |
from transformers import pipeline
|
8 |
|
9 |
# Initialize Flask app
|
10 |
app = Flask(__name__)
|
11 |
|
12 |
+
# Download NLTK resources
|
13 |
+
nltk.download('punkt')
|
14 |
+
nltk.download('stopwords')
|
15 |
+
nltk.download('wordnet')
|
16 |
+
|
17 |
+
# Initialize NLTK components
|
18 |
+
lemmatizer = WordNetLemmatizer()
|
19 |
+
stop_words = set(stopwords.words('english'))
|
20 |
|
21 |
# Load Hugging Face pipelines
|
22 |
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
|
|
24 |
|
25 |
# Function to preprocess text
|
26 |
def preprocess_text(text):
|
27 |
+
# Tokenize
|
28 |
+
tokens = word_tokenize(text)
|
29 |
+
# Remove stop words and lemmatize
|
30 |
+
cleaned_tokens = [lemmatizer.lemmatize(token.lower()) for token in tokens if token.isalpha() and token.lower() not in stop_words]
|
31 |
+
return ' '.join(cleaned_tokens)
|
32 |
|
33 |
@app.route('/')
|
34 |
def home():
|