huimanho commited on
Commit
41ad2dc
·
verified ·
1 Parent(s): 039b39d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, render_template
2
+ import pandas as pd
3
+ import spacy
4
+ from transformers import pipeline
5
+
6
+ # Initialize Flask app
7
+ app = Flask(__name__)
8
+
9
+ # Load spaCy model for preprocessing
10
+ nlp = spacy.load("en_core_web_sm")
11
+
12
+ # Load Hugging Face pipelines
13
+ sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
14
+ ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", aggregation_strategy="simple")
15
+
16
+ # Function to preprocess text
17
+ def preprocess_text(text):
18
+ doc = nlp(text)
19
+ tokens = [token.lemma_.lower() for token in doc if not token.is_stop and not token.is_punct]
20
+ return ' '.join(tokens)
21
+
22
+ @app.route('/')
23
+ def home():
24
+ return render_template('index.html')
25
+
26
+ @app.route('/analyze', methods=['POST'])
27
+ def analyze():
28
+ if request.method == 'POST':
29
+ comments = request.form['comments']
30
+ cleaned_comments = preprocess_text(comments)
31
+
32
+ # Analyze sentiment
33
+ sentiment_result = sentiment_pipeline(cleaned_comments)[0]
34
+
35
+ # Analyze entities
36
+ entities_result = ner_pipeline(cleaned_comments)
37
+
38
+ # Prepare results for rendering
39
+ result = {
40
+ 'original_comment': comments,
41
+ 'cleaned_comment': cleaned_comments,
42
+ 'sentiment': sentiment_result,
43
+ 'entities': entities_result
44
+ }
45
+
46
+ return render_template('result.html', result=result)
47
+
48
+ if __name__ == '__main__':
49
+ app.run(debug=True)