Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload utils.py
Browse files
    	
        utils.py
    CHANGED
    
    | 
         @@ -1,153 +1,141 @@ 
     | 
|
| 1 | 
         
            -
            import math
         
     | 
| 2 | 
         
            -
            import numpy as np
         
     | 
| 3 | 
         
            -
            import pandas as pd
         
     | 
| 4 | 
         
            -
             
     | 
| 5 | 
         
            -
            import gradio as gr
         
     | 
| 6 | 
         
            -
            from huggingface_hub import from_pretrained_fastai
         
     | 
| 7 | 
         
            -
            from fastai.vision.all import *
         
     | 
| 8 | 
         
            -
            from torchvision.models import vgg19, vgg16
         
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
            pascal_source = '.'
         
     | 
| 11 | 
         
            -
            EXAMPLES_PATH = Path('/content/examples')
         
     | 
| 12 | 
         
            -
            repo_id = "hugginglearners/fastai-style-transfer"
         
     | 
| 13 | 
         
            -
             
     | 
| 14 | 
         
            -
            def get_stl_fs(fs): return fs[:-1]
         
     | 
| 15 | 
         
            -
             
     | 
| 16 | 
         
            -
            def style_loss(inp:Tensor, out_feat:Tensor):
         
     | 
| 17 | 
         
            -
              "Calculate style loss, assumes we have `im_grams`"
         
     | 
| 18 | 
         
            -
              # Get batch size
         
     | 
| 19 | 
         
            -
              bs = inp[0].shape[0]
         
     | 
| 20 | 
         
            -
              loss = []
         
     | 
| 21 | 
         
            -
              # For every item in our inputs
         
     | 
| 22 | 
         
            -
              for y, f in zip(*map(get_stl_fs, [im_grams, inp])):
         
     | 
| 23 | 
         
            -
                # Calculate MSE
         
     | 
| 24 | 
         
            -
                loss.append(F.mse_loss(y.repeat(bs, 1, 1), gram(f)))
         
     | 
| 25 | 
         
            -
              # Multiply their sum by 30000
         
     | 
| 26 | 
         
            -
              return 3e5 * sum(loss)
         
     | 
| 27 | 
         
            -
             
     | 
| 28 | 
         
            -
            class FeatureLoss(Module):
         
     | 
| 29 | 
         
            -
              "Combines two losses and features into a useable loss function"
         
     | 
| 30 | 
         
            -
              def __init__(self, feats, style_loss, act_loss, hooks, feat_net):
         
     | 
| 31 | 
         
            -
                store_attr()
         
     | 
| 32 | 
         
            -
                self.hooks = hooks
         
     | 
| 33 | 
         
            -
                self.feat_net = feat_net
         
     | 
| 34 | 
         
            -
                self.reset_metrics()
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
              def forward(self, pred, targ):
         
     | 
| 37 | 
         
            -
                # First get the features of our prediction and target
         
     | 
| 38 | 
         
            -
                pred_feat, targ_feat = self.feats(self.feat_net, self.hooks, pred), self.feats(self.feat_net, self.hooks, targ)
         
     | 
| 39 | 
         
            -
                # Calculate style and activation loss
         
     | 
| 40 | 
         
            -
                style_loss = self.style_loss(pred_feat, targ_feat)
         
     | 
| 41 | 
         
            -
                act_loss = self.act_loss(pred_feat, targ_feat)
         
     | 
| 42 | 
         
            -
                # Store the loss
         
     | 
| 43 | 
         
            -
                self._add_loss(style_loss, act_loss)
         
     | 
| 44 | 
         
            -
                # Return the sum
         
     | 
| 45 | 
         
            -
                return style_loss + act_loss
         
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
              def reset_metrics(self):
         
     | 
| 48 | 
         
            -
                # Generates a blank metric
         
     | 
| 49 | 
         
            -
                self.metrics = dict(style = [], content = [])
         
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
              def _add_loss(self, style_loss, act_loss):
         
     | 
| 52 | 
         
            -
                # Add to our metrics
         
     | 
| 53 | 
         
            -
                self.metrics['style'].append(style_loss)
         
     | 
| 54 | 
         
            -
                self.metrics['content'].append(act_loss)
         
     | 
| 55 | 
         
            -
             
     | 
| 56 | 
         
            -
            def act_loss(inp:Tensor, targ:Tensor):
         
     | 
| 57 | 
         
            -
              "Calculate the MSE loss of the activation layers"
         
     | 
| 58 | 
         
            -
              return F.mse_loss(inp[-1], targ[-1])
         
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
            class ReflectionLayer(Module):
         
     | 
| 61 | 
         
            -
                "A series of Reflection Padding followed by a ConvLayer"
         
     | 
| 62 | 
         
            -
                def __init__(self, in_channels, out_channels, ks=3, stride=2):
         
     | 
| 63 | 
         
            -
                    reflection_padding = ks // 2
         
     | 
| 64 | 
         
            -
                    self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
         
     | 
| 65 | 
         
            -
                    self.conv2d = nn.Conv2d(in_channels, out_channels, ks, stride)
         
     | 
| 66 | 
         
            -
             
     | 
| 67 | 
         
            -
                def forward(self, x):
         
     | 
| 68 | 
         
            -
                    out = self.reflection_pad(x)
         
     | 
| 69 | 
         
            -
                    out = self.conv2d(out)
         
     | 
| 70 | 
         
            -
                    return out
         
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
            class ResidualBlock(Module):
         
     | 
| 73 | 
         
            -
                "Two reflection layers and an added activation function with residual"
         
     | 
| 74 | 
         
            -
                def __init__(self, channels):
         
     | 
| 75 | 
         
            -
                      self.conv1 = ReflectionLayer(channels, channels, ks=3, stride=1)
         
     | 
| 76 | 
         
            -
                      self.in1 = nn.InstanceNorm2d(channels, affine=True)
         
     | 
| 77 | 
         
            -
                      self.conv2 = ReflectionLayer(channels, channels, ks=3, stride=1)
         
     | 
| 78 | 
         
            -
                      self.in2 = nn.InstanceNorm2d(channels, affine=True)
         
     | 
| 79 | 
         
            -
                      self.relu = nn.ReLU()
         
     | 
| 80 | 
         
            -
             
     | 
| 81 | 
         
            -
                def forward(self, x):
         
     | 
| 82 | 
         
            -
                      residual = x
         
     | 
| 83 | 
         
            -
                      out = self.relu(self.in1(self.conv1(x)))
         
     | 
| 84 | 
         
            -
                      out = self.in2(self.conv2(out))
         
     | 
| 85 | 
         
            -
                      out = out + residual
         
     | 
| 86 | 
         
            -
                      return out
         
     | 
| 87 | 
         
            -
             
     | 
| 88 | 
         
            -
            class UpsampleConvLayer(Module):
         
     | 
| 89 | 
         
            -
                "Upsample with a ReflectionLayer"
         
     | 
| 90 | 
         
            -
                def __init__(self, in_channels, out_channels, ks=3, stride=1, upsample=None):
         
     | 
| 91 | 
         
            -
                    self.upsample = upsample
         
     | 
| 92 | 
         
            -
                    reflection_padding = ks // 2
         
     | 
| 93 | 
         
            -
                    self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
         
     | 
| 94 | 
         
            -
                    self.conv2d = nn.Conv2d(in_channels, out_channels, ks, stride)
         
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
                def forward(self, x):
         
     | 
| 97 | 
         
            -
                    x_in = x
         
     | 
| 98 | 
         
            -
                    if self.upsample:
         
     | 
| 99 | 
         
            -
                        x_in = torch.nn.functional.interpolate(x_in, mode='nearest', scale_factor=self.upsample)
         
     | 
| 100 | 
         
            -
                    out = self.reflection_pad(x_in)
         
     | 
| 101 | 
         
            -
                    out = self.conv2d(out)
         
     | 
| 102 | 
         
            -
                    return out
         
     | 
| 103 | 
         
            -
             
     | 
| 104 | 
         
            -
            class TransformerNet(Module):
         
     | 
| 105 | 
         
            -
                "A simple network for style transfer"
         
     | 
| 106 | 
         
            -
                def __init__(self):
         
     | 
| 107 | 
         
            -
                    # Initial convolution layers
         
     | 
| 108 | 
         
            -
                    self.conv1 = ReflectionLayer(3, 32, ks=9, stride=1)
         
     | 
| 109 | 
         
            -
                    self.in1 = nn.InstanceNorm2d(32, affine=True)
         
     | 
| 110 | 
         
            -
                    self.conv2 = ReflectionLayer(32, 64, ks=3, stride=2)
         
     | 
| 111 | 
         
            -
                    self.in2 = nn.InstanceNorm2d(64, affine=True)
         
     | 
| 112 | 
         
            -
                    self.conv3 = ReflectionLayer(64, 128, ks=3, stride=2)
         
     | 
| 113 | 
         
            -
                    self.in3 = nn.InstanceNorm2d(128, affine=True)
         
     | 
| 114 | 
         
            -
                    # Residual layers
         
     | 
| 115 | 
         
            -
                    self.res1 = ResidualBlock(128)
         
     | 
| 116 | 
         
            -
                    self.res2 = ResidualBlock(128)
         
     | 
| 117 | 
         
            -
                    self.res3 = ResidualBlock(128)
         
     | 
| 118 | 
         
            -
                    self.res4 = ResidualBlock(128)
         
     | 
| 119 | 
         
            -
                    self.res5 = ResidualBlock(128)
         
     | 
| 120 | 
         
            -
                    # Upsampling Layers
         
     | 
| 121 | 
         
            -
                    self.deconv1 = UpsampleConvLayer(128, 64, ks=3, stride=1, upsample=2)
         
     | 
| 122 | 
         
            -
                    self.in4 = nn.InstanceNorm2d(64, affine=True)
         
     | 
| 123 | 
         
            -
                    self.deconv2 = UpsampleConvLayer(64, 32, ks=3, stride=1, upsample=2)
         
     | 
| 124 | 
         
            -
                    self.in5 = nn.InstanceNorm2d(32, affine=True)
         
     | 
| 125 | 
         
            -
                    self.deconv3 = ReflectionLayer(32, 3, ks=9, stride=1)
         
     | 
| 126 | 
         
            -
                    # Non-linearities
         
     | 
| 127 | 
         
            -
                    self.relu = nn.ReLU()
         
     | 
| 128 | 
         
            -
             
     | 
| 129 | 
         
            -
                def forward(self, X):
         
     | 
| 130 | 
         
            -
                    y = self.relu(self.in1(self.conv1(X)))
         
     | 
| 131 | 
         
            -
                    y = self.relu(self.in2(self.conv2(y)))
         
     | 
| 132 | 
         
            -
                    y = self.relu(self.in3(self.conv3(y)))
         
     | 
| 133 | 
         
            -
                    y = self.res1(y)
         
     | 
| 134 | 
         
            -
                    y = self.res2(y)
         
     | 
| 135 | 
         
            -
                    y = self.res3(y)
         
     | 
| 136 | 
         
            -
                    y = self.res4(y)
         
     | 
| 137 | 
         
            -
                    y = self.res5(y)
         
     | 
| 138 | 
         
            -
                    y = self.relu(self.in4(self.deconv1(y)))
         
     | 
| 139 | 
         
            -
                    y = self.relu(self.in5(self.deconv2(y)))
         
     | 
| 140 | 
         
            -
                    y = self.deconv3(y)
         
     | 
| 141 | 
         
            -
                    return y
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
            def _inner(feat_net, hooks, x):
         
     | 
| 144 | 
         
            -
              feat_net(x)
         
     | 
| 145 | 
         
            -
              return hooks.stored
         
     | 
| 146 | 
         
            -
             
     | 
| 147 | 
         
            -
            def _get_layers(arch:str, pretrained=True):
         
     | 
| 148 | 
         
            -
              "Get the layers and arch for a VGG Model (16 and 19 are supported only)"
         
     | 
| 149 | 
         
            -
              feat_net = vgg19(pretrained=pretrained).cuda() if arch.find('9') > 1 else vgg16(pretrained=pretrained).cuda()
         
     | 
| 150 | 
         
            -
              config = _vgg_config.get(arch)
         
     | 
| 151 | 
         
            -
              features = feat_net.features.cuda().eval()
         
     | 
| 152 | 
         
            -
              for p in features.parameters(): p.requires_grad=False
         
     | 
| 153 | 
         
            -
              return feat_net, [features[i] for i in config]
         
     | 
| 
         | 
|
| 1 | 
         
            +
            import math
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            import pandas as pd
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            import gradio as gr
         
     | 
| 6 | 
         
            +
            from huggingface_hub import from_pretrained_fastai
         
     | 
| 7 | 
         
            +
            from fastai.vision.all import *
         
     | 
| 8 | 
         
            +
            from torchvision.models import vgg19, vgg16
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            pascal_source = '.'
         
     | 
| 11 | 
         
            +
            EXAMPLES_PATH = Path('/content/examples')
         
     | 
| 12 | 
         
            +
            repo_id = "hugginglearners/fastai-style-transfer"
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            def get_stl_fs(fs): return fs[:-1]
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            def style_loss(inp:Tensor, out_feat:Tensor):
         
     | 
| 17 | 
         
            +
              "Calculate style loss, assumes we have `im_grams`"
         
     | 
| 18 | 
         
            +
              # Get batch size
         
     | 
| 19 | 
         
            +
              bs = inp[0].shape[0]
         
     | 
| 20 | 
         
            +
              loss = []
         
     | 
| 21 | 
         
            +
              # For every item in our inputs
         
     | 
| 22 | 
         
            +
              for y, f in zip(*map(get_stl_fs, [im_grams, inp])):
         
     | 
| 23 | 
         
            +
                # Calculate MSE
         
     | 
| 24 | 
         
            +
                loss.append(F.mse_loss(y.repeat(bs, 1, 1), gram(f)))
         
     | 
| 25 | 
         
            +
              # Multiply their sum by 30000
         
     | 
| 26 | 
         
            +
              return 3e5 * sum(loss)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            class FeatureLoss(Module):
         
     | 
| 29 | 
         
            +
              "Combines two losses and features into a useable loss function"
         
     | 
| 30 | 
         
            +
              def __init__(self, feats, style_loss, act_loss, hooks, feat_net):
         
     | 
| 31 | 
         
            +
                store_attr()
         
     | 
| 32 | 
         
            +
                self.hooks = hooks
         
     | 
| 33 | 
         
            +
                self.feat_net = feat_net
         
     | 
| 34 | 
         
            +
                self.reset_metrics()
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
              def forward(self, pred, targ):
         
     | 
| 37 | 
         
            +
                # First get the features of our prediction and target
         
     | 
| 38 | 
         
            +
                pred_feat, targ_feat = self.feats(self.feat_net, self.hooks, pred), self.feats(self.feat_net, self.hooks, targ)
         
     | 
| 39 | 
         
            +
                # Calculate style and activation loss
         
     | 
| 40 | 
         
            +
                style_loss = self.style_loss(pred_feat, targ_feat)
         
     | 
| 41 | 
         
            +
                act_loss = self.act_loss(pred_feat, targ_feat)
         
     | 
| 42 | 
         
            +
                # Store the loss
         
     | 
| 43 | 
         
            +
                self._add_loss(style_loss, act_loss)
         
     | 
| 44 | 
         
            +
                # Return the sum
         
     | 
| 45 | 
         
            +
                return style_loss + act_loss
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
              def reset_metrics(self):
         
     | 
| 48 | 
         
            +
                # Generates a blank metric
         
     | 
| 49 | 
         
            +
                self.metrics = dict(style = [], content = [])
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
              def _add_loss(self, style_loss, act_loss):
         
     | 
| 52 | 
         
            +
                # Add to our metrics
         
     | 
| 53 | 
         
            +
                self.metrics['style'].append(style_loss)
         
     | 
| 54 | 
         
            +
                self.metrics['content'].append(act_loss)
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            def act_loss(inp:Tensor, targ:Tensor):
         
     | 
| 57 | 
         
            +
              "Calculate the MSE loss of the activation layers"
         
     | 
| 58 | 
         
            +
              return F.mse_loss(inp[-1], targ[-1])
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            class ReflectionLayer(Module):
         
     | 
| 61 | 
         
            +
                "A series of Reflection Padding followed by a ConvLayer"
         
     | 
| 62 | 
         
            +
                def __init__(self, in_channels, out_channels, ks=3, stride=2):
         
     | 
| 63 | 
         
            +
                    reflection_padding = ks // 2
         
     | 
| 64 | 
         
            +
                    self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
         
     | 
| 65 | 
         
            +
                    self.conv2d = nn.Conv2d(in_channels, out_channels, ks, stride)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                def forward(self, x):
         
     | 
| 68 | 
         
            +
                    out = self.reflection_pad(x)
         
     | 
| 69 | 
         
            +
                    out = self.conv2d(out)
         
     | 
| 70 | 
         
            +
                    return out
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
            class ResidualBlock(Module):
         
     | 
| 73 | 
         
            +
                "Two reflection layers and an added activation function with residual"
         
     | 
| 74 | 
         
            +
                def __init__(self, channels):
         
     | 
| 75 | 
         
            +
                      self.conv1 = ReflectionLayer(channels, channels, ks=3, stride=1)
         
     | 
| 76 | 
         
            +
                      self.in1 = nn.InstanceNorm2d(channels, affine=True)
         
     | 
| 77 | 
         
            +
                      self.conv2 = ReflectionLayer(channels, channels, ks=3, stride=1)
         
     | 
| 78 | 
         
            +
                      self.in2 = nn.InstanceNorm2d(channels, affine=True)
         
     | 
| 79 | 
         
            +
                      self.relu = nn.ReLU()
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                def forward(self, x):
         
     | 
| 82 | 
         
            +
                      residual = x
         
     | 
| 83 | 
         
            +
                      out = self.relu(self.in1(self.conv1(x)))
         
     | 
| 84 | 
         
            +
                      out = self.in2(self.conv2(out))
         
     | 
| 85 | 
         
            +
                      out = out + residual
         
     | 
| 86 | 
         
            +
                      return out
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            class UpsampleConvLayer(Module):
         
     | 
| 89 | 
         
            +
                "Upsample with a ReflectionLayer"
         
     | 
| 90 | 
         
            +
                def __init__(self, in_channels, out_channels, ks=3, stride=1, upsample=None):
         
     | 
| 91 | 
         
            +
                    self.upsample = upsample
         
     | 
| 92 | 
         
            +
                    reflection_padding = ks // 2
         
     | 
| 93 | 
         
            +
                    self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
         
     | 
| 94 | 
         
            +
                    self.conv2d = nn.Conv2d(in_channels, out_channels, ks, stride)
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                def forward(self, x):
         
     | 
| 97 | 
         
            +
                    x_in = x
         
     | 
| 98 | 
         
            +
                    if self.upsample:
         
     | 
| 99 | 
         
            +
                        x_in = torch.nn.functional.interpolate(x_in, mode='nearest', scale_factor=self.upsample)
         
     | 
| 100 | 
         
            +
                    out = self.reflection_pad(x_in)
         
     | 
| 101 | 
         
            +
                    out = self.conv2d(out)
         
     | 
| 102 | 
         
            +
                    return out
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            class TransformerNet(Module):
         
     | 
| 105 | 
         
            +
                "A simple network for style transfer"
         
     | 
| 106 | 
         
            +
                def __init__(self):
         
     | 
| 107 | 
         
            +
                    # Initial convolution layers
         
     | 
| 108 | 
         
            +
                    self.conv1 = ReflectionLayer(3, 32, ks=9, stride=1)
         
     | 
| 109 | 
         
            +
                    self.in1 = nn.InstanceNorm2d(32, affine=True)
         
     | 
| 110 | 
         
            +
                    self.conv2 = ReflectionLayer(32, 64, ks=3, stride=2)
         
     | 
| 111 | 
         
            +
                    self.in2 = nn.InstanceNorm2d(64, affine=True)
         
     | 
| 112 | 
         
            +
                    self.conv3 = ReflectionLayer(64, 128, ks=3, stride=2)
         
     | 
| 113 | 
         
            +
                    self.in3 = nn.InstanceNorm2d(128, affine=True)
         
     | 
| 114 | 
         
            +
                    # Residual layers
         
     | 
| 115 | 
         
            +
                    self.res1 = ResidualBlock(128)
         
     | 
| 116 | 
         
            +
                    self.res2 = ResidualBlock(128)
         
     | 
| 117 | 
         
            +
                    self.res3 = ResidualBlock(128)
         
     | 
| 118 | 
         
            +
                    self.res4 = ResidualBlock(128)
         
     | 
| 119 | 
         
            +
                    self.res5 = ResidualBlock(128)
         
     | 
| 120 | 
         
            +
                    # Upsampling Layers
         
     | 
| 121 | 
         
            +
                    self.deconv1 = UpsampleConvLayer(128, 64, ks=3, stride=1, upsample=2)
         
     | 
| 122 | 
         
            +
                    self.in4 = nn.InstanceNorm2d(64, affine=True)
         
     | 
| 123 | 
         
            +
                    self.deconv2 = UpsampleConvLayer(64, 32, ks=3, stride=1, upsample=2)
         
     | 
| 124 | 
         
            +
                    self.in5 = nn.InstanceNorm2d(32, affine=True)
         
     | 
| 125 | 
         
            +
                    self.deconv3 = ReflectionLayer(32, 3, ks=9, stride=1)
         
     | 
| 126 | 
         
            +
                    # Non-linearities
         
     | 
| 127 | 
         
            +
                    self.relu = nn.ReLU()
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                def forward(self, X):
         
     | 
| 130 | 
         
            +
                    y = self.relu(self.in1(self.conv1(X)))
         
     | 
| 131 | 
         
            +
                    y = self.relu(self.in2(self.conv2(y)))
         
     | 
| 132 | 
         
            +
                    y = self.relu(self.in3(self.conv3(y)))
         
     | 
| 133 | 
         
            +
                    y = self.res1(y)
         
     | 
| 134 | 
         
            +
                    y = self.res2(y)
         
     | 
| 135 | 
         
            +
                    y = self.res3(y)
         
     | 
| 136 | 
         
            +
                    y = self.res4(y)
         
     | 
| 137 | 
         
            +
                    y = self.res5(y)
         
     | 
| 138 | 
         
            +
                    y = self.relu(self.in4(self.deconv1(y)))
         
     | 
| 139 | 
         
            +
                    y = self.relu(self.in5(self.deconv2(y)))
         
     | 
| 140 | 
         
            +
                    y = self.deconv3(y)
         
     | 
| 141 | 
         
            +
                    return y
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         |