import { InferenceOutputError } from "../../lib/InferenceOutputError"; import { getDefaultTask } from "../../lib/getDefaultTask"; import type { BaseArgs, Options } from "../../types"; import { request } from "../custom/request"; export type FeatureExtractionArgs = BaseArgs & { /** * The inputs is a string or a list of strings to get the features from. * * inputs: "That is a happy person", * */ inputs: string | string[]; }; /** * Returned values are a multidimensional array of floats (dimension depending on if you sent a string or a list of string, and if the automatic reduction, usually mean_pooling for instance was applied for you or not. This should be explained on the model's README). */ export type FeatureExtractionOutput = (number | number[] | number[][])[]; /** * This task reads some text and outputs raw float values, that are usually consumed as part of a semantic database/semantic search. */ export async function featureExtraction( args: FeatureExtractionArgs, options?: Options ): Promise { const defaultTask = args.model ? await getDefaultTask(args.model, args.accessToken, options) : undefined; const res = await request(args, { ...options, taskHint: "feature-extraction", ...(defaultTask === "sentence-similarity" && { forceTask: "feature-extraction" }), }); let isValidOutput = true; const isNumArrayRec = (arr: unknown[], maxDepth: number, curDepth = 0): boolean => { if (curDepth > maxDepth) return false; if (arr.every((x) => Array.isArray(x))) { return arr.every((x) => isNumArrayRec(x as unknown[], maxDepth, curDepth + 1)); } else { return arr.every((x) => typeof x === "number"); } }; isValidOutput = Array.isArray(res) && isNumArrayRec(res, 3, 0); if (!isValidOutput) { throw new InferenceOutputError("Expected Array"); } return res; }