import { request } from "../custom/request"; import type { BaseArgs, Options } from "../../types"; import { InferenceOutputError } from "../../lib/InferenceOutputError"; export type ObjectDetectionArgs = BaseArgs & { /** * Binary image data */ data: Blob | ArrayBuffer; }; export interface ObjectDetectionOutputValue { /** * A dict (with keys [xmin,ymin,xmax,ymax]) representing the bounding box of a detected object. */ box: { xmax: number; xmin: number; ymax: number; ymin: number; }; /** * The label for the class (model specific) of a detected object. */ label: string; /** * A float that represents how likely it is that the detected object belongs to the given class. */ score: number; } export type ObjectDetectionOutput = ObjectDetectionOutputValue[]; /** * This task reads some image input and outputs the likelihood of classes & bounding boxes of detected objects. * Recommended model: facebook/detr-resnet-50 */ export async function objectDetection(args: ObjectDetectionArgs, options?: Options): Promise { const res = await request(args, { ...options, taskHint: "object-detection", }); const isValidOutput = Array.isArray(res) && res.every( (x) => typeof x.label === "string" && typeof x.score === "number" && typeof x.box.xmin === "number" && typeof x.box.ymin === "number" && typeof x.box.xmax === "number" && typeof x.box.ymax === "number" ); if (!isValidOutput) { throw new InferenceOutputError( "Expected Array<{label:string; score:number; box:{xmin:number; ymin:number; xmax:number; ymax:number}}>" ); } return res; }