import type { TaskDataCustom } from "../Types"; const taskData: TaskDataCustom = { datasets: [ { // TODO write proper description description: "", id: "", }, ], demo: { inputs: [ { filename: "image-classification-input.jpeg", type: "img", }, { label: "Classes", content: "cat, dog, bird", type: "text", }, ], outputs: [ { type: "chart", data: [ { label: "Cat", score: 0.664, }, { label: "Dog", score: 0.329, }, { label: "Bird", score: 0.008, }, ], }, ], }, metrics: [ { description: "Computes the number of times the correct label appears in top K labels predicted", id: "top-K accuracy", }, ], models: [ { description: "Robust image classification model trained on publicly available image-caption data.", id: "openai/clip-vit-base-patch16", }, { description: "Robust image classification model trained on publicly available image-caption data trained on additional high pixel data for better performance.", id: "openai/clip-vit-large-patch14-336", }, { description: "Strong image classification model for biomedical domain.", id: "microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224", }, ], spaces: [ { description: "An application that leverages zero shot image classification to find best captions to generate an image. ", id: "pharma/CLIP-Interrogator", }, ], summary: "Zero shot image classification is the task of classifying previously unseen classes during training of a model.", widgetModels: ["openai/clip-vit-large-patch14-336"], youtubeId: "", }; export default taskData;