import type { TaskDataCustom } from "../Types"; const taskData: TaskDataCustom = { datasets: [ { description: "The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.", id: "wikitablequestions", }, { description: "WikiSQL is a dataset of 80654 hand-annotated examples of questions and SQL queries distributed across 24241 tables from Wikipedia.", id: "wikisql", }, ], demo: { inputs: [ { table: [ ["Rank", "Name", "No.of reigns", "Combined days"], ["1", "lou Thesz", "3", "3749"], ["2", "Ric Flair", "8", "3103"], ["3", "Harley Race", "7", "1799"], ], type: "tabular", }, { label: "Question", content: "What is the number of reigns for Harley Race?", type: "text" }, ], outputs: [{ label: "Result", content: "7", type: "text" }], }, metrics: [ { description: "Checks whether the predicted answer(s) is the same as the ground-truth answer(s).", id: "Denotation Accuracy", }, ], models: [ { description: "A table question answering model that is capable of neural SQL execution, i.e., employ TAPEX to execute a SQL query on a given table.", id: "microsoft/tapex-base", }, { description: "A robust table question answering model.", id: "google/tapas-base-finetuned-wtq", }, ], spaces: [ { description: "An application that answers questions based on table CSV files.", id: "katanaml/table-query", }, ], summary: "Table Question Answering (Table QA) is the answering a question about an information on a given table.", widgetModels: ["google/tapas-base-finetuned-wtq"], }; export default taskData;