machineuser commited on
Commit
e7caf98
·
1 Parent(s): 7fd9bbe

Sync widgets demo

Browse files
packages/tasks/src/tasks/zero-shot-object-detection/about.md ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Use Cases
2
+
3
+ ### Object Search
4
+
5
+ Zero-shot object detection models can be used in image search. Smartphones, for example, use zero-shot object detection models to detect entities (such as specific places or objects) and allow the user to search for the entity on the internet.
6
+
7
+ ### Object Counting
8
+
9
+ Zero-shot object detection models are used to count instances of objects in a given image. This can include counting the objects in warehouses or stores or the number of visitors in a store. They are also used to manage crowds at events to prevent disasters.
10
+
11
+ ## Inference
12
+
13
+ You can infer with zero-shot object detection models through the `zero-shot-object-detection` pipeline. When calling the pipeline, you just need to specify a path or HTTP link to an image and the candidate labels.
14
+
15
+ ```python
16
+ from transformers import pipeline
17
+ from PIL import Image
18
+
19
+ image = Image.open("my-image.png").convert("RGB")
20
+
21
+ detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection")
22
+
23
+ predictions = detector(
24
+ image,
25
+ candidate_labels=["a photo of a cat", "a photo of a dog"],
26
+ )
27
+
28
+ # [{'score': 0.95,
29
+ # 'label': 'a photo of a cat',
30
+ # 'box': {'xmin': 180, 'ymin': 71, 'xmax': 271, 'ymax': 178}},
31
+ # ...
32
+ # ]
33
+ ```
34
+
35
+ # Useful Resources
36
+
37
+ - [Zero-shot object detection task guide](https://huggingface.co/docs/transformers/tasks/zero_shot_object_detection)
38
+
39
+ This page was made possible thanks to the efforts of [Victor Guichard](https://huggingface.co/VictorGuichard)
packages/tasks/src/tasks/zero-shot-object-detection/data.ts ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import type { TaskDataCustom } from "..";
2
+
3
+ const taskData: TaskDataCustom = {
4
+ datasets: [],
5
+ demo: {
6
+ inputs: [
7
+ {
8
+ filename: "zero-shot-object-detection-input.jpg",
9
+ type: "img",
10
+ },
11
+ {
12
+ label: "Classes",
13
+ content: "cat, dog, bird",
14
+ type: "text",
15
+ },
16
+ ],
17
+ outputs: [
18
+ {
19
+ filename: "zero-shot-object-detection-output.jpg",
20
+ type: "img",
21
+ },
22
+ ],
23
+ },
24
+ metrics: [
25
+ {
26
+ description:
27
+ "The Average Precision (AP) metric is the Area Under the PR Curve (AUC-PR). It is calculated for each class separately",
28
+ id: "Average Precision",
29
+ },
30
+ {
31
+ description: "The Mean Average Precision (mAP) metric is the overall average of the AP values",
32
+ id: "Mean Average Precision",
33
+ },
34
+ {
35
+ description:
36
+ "The APα metric is the Average Precision at the IoU threshold of a α value, for example, AP50 and AP75",
37
+ id: "APα",
38
+ },
39
+ ],
40
+ models: [
41
+ {
42
+ description: "Solid zero-shot object detection model that uses CLIP as backbone.",
43
+ id: "google/owlvit-base-patch32",
44
+ },
45
+ {
46
+ description: "The improved version of the owlvit model.",
47
+ id: "google/owlv2-base-patch16-ensemble",
48
+ },
49
+ ],
50
+ spaces: [],
51
+ summary:
52
+ "Zero-shot object detection is a computer vision task to detect objects and their classes in images, without any prior training or knowledge of the classes. Zero-shot object detection models receive an image as input, as well as a list of candidate classes, and output the bounding boxes and labels where the objects have been detected.",
53
+ widgetModels: [],
54
+ youtubeId: "",
55
+ };
56
+
57
+ export default taskData;