Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import type { TaskDataCustom } from "../Types"; | |
const taskData: TaskDataCustom = { | |
datasets: [ | |
{ | |
// TODO write proper description | |
description: "", | |
id: "", | |
}, | |
], | |
demo: { | |
inputs: [ | |
{ | |
filename: "image-classification-input.jpeg", | |
type: "img", | |
}, | |
{ | |
label: "Classes", | |
content: "cat, dog, bird", | |
type: "text", | |
}, | |
], | |
outputs: [ | |
{ | |
type: "chart", | |
data: [ | |
{ | |
label: "Cat", | |
score: 0.664, | |
}, | |
{ | |
label: "Dog", | |
score: 0.329, | |
}, | |
{ | |
label: "Bird", | |
score: 0.008, | |
}, | |
], | |
}, | |
], | |
}, | |
metrics: [ | |
{ | |
description: "Computes the number of times the correct label appears in top K labels predicted", | |
id: "top-K accuracy", | |
}, | |
], | |
models: [ | |
{ | |
description: "Robust image classification model trained on publicly available image-caption data.", | |
id: "openai/clip-vit-base-patch16", | |
}, | |
{ | |
description: | |
"Robust image classification model trained on publicly available image-caption data trained on additional high pixel data for better performance.", | |
id: "openai/clip-vit-large-patch14-336", | |
}, | |
{ | |
description: "Strong image classification model for biomedical domain.", | |
id: "microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224", | |
}, | |
], | |
spaces: [ | |
{ | |
description: | |
"An application that leverages zero shot image classification to find best captions to generate an image. ", | |
id: "pharma/CLIP-Interrogator", | |
}, | |
], | |
summary: | |
"Zero shot image classification is the task of classifying previously unseen classes during training of a model.", | |
widgetModels: ["openai/clip-vit-large-patch14-336"], | |
youtubeId: "", | |
}; | |
export default taskData; | |