File size: 1,232 Bytes
94753b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import { InferenceOutputError } from "../../lib/InferenceOutputError";
import type { BaseArgs, Options } from "../../types";
import { request } from "../custom/request";

export type TabularClassificationArgs = BaseArgs & {
	inputs: {
		/**
		 * A table of data represented as a dict of list where entries are headers and the lists are all the values, all lists must have the same size.
		 */
		data: Record<string, string[]>;
	};
};

/**
 * A list of predicted labels for each row
 */
export type TabularClassificationOutput = number[];

/**
 * Predicts target label for a given set of features in tabular form.
 * Typically, you will want to train a classification model on your training data and use it with your new data of the same format.
 * Example model: vvmnnnkv/wine-quality
 */
export async function tabularClassification(
	args: TabularClassificationArgs,
	options?: Options
): Promise<TabularClassificationOutput> {
	const res = await request<TabularClassificationOutput>(args, {
		...options,
		taskHint: "tabular-classification",
	});
	const isValidOutput = Array.isArray(res) && res.every((x) => typeof x === "number");
	if (!isValidOutput) {
		throw new InferenceOutputError("Expected number[]");
	}
	return res;
}