Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,429 Bytes
86c4ad7 b2ecf7d 2204ef8 b2ecf7d 2204ef8 b2ecf7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import type { ModelData, WidgetExampleAttribute } from "@huggingface/tasks";
import { parseJSON } from "../../../utils/ViewUtils.js";
import type { ModelLoadInfo, TableData } from "./types.js";
import { LoadState } from "./types.js";
const KEYS_TEXT: WidgetExampleAttribute[] = ["text", "context", "candidate_labels"];
const KEYS_TABLE: WidgetExampleAttribute[] = ["table", "structured_data"];
type QueryParamVal = string | null | boolean | (string | number)[][];
export function getQueryParamVal(key: WidgetExampleAttribute): QueryParamVal {
const searchParams = new URL(window.location.href).searchParams;
const value = searchParams.get(key);
if (KEYS_TEXT.includes(key)) {
return value;
} else if (KEYS_TABLE.includes(key)) {
const table = convertDataToTable((parseJSON(value) as TableData) ?? {});
return table;
} else if (key === "multi_class") {
return value === "true";
}
return value;
}
// Update current url search params, keeping existing keys intact.
export function updateUrl(obj: Partial<Record<WidgetExampleAttribute, string | undefined>>): void {
if (!window) {
return;
}
const sp = new URL(window.location.href).searchParams;
for (const [k, v] of Object.entries(obj)) {
if (v === undefined) {
sp.delete(k);
} else {
sp.set(k, v);
}
}
const path = `${window.location.pathname}?${sp.toString()}`;
window.history.replaceState(null, "", path);
}
// Run through our own proxy to bypass CORS:
function proxify(url: string): string {
return url.startsWith(`http://localhost`) || new URL(url).host === window.location.host
? url
: `https://widgets.hf.co/proxy?url=${url}`;
}
// Get BLOB from a given URL after proxifying the URL
export async function getBlobFromUrl(url: string): Promise<Blob> {
const proxiedUrl = proxify(url);
const res = await fetch(proxiedUrl);
const blob = await res.blob();
return blob;
}
interface Success<T> {
computeTime: string;
output: T;
outputJson: string;
response: Response;
status: "success";
}
interface LoadingModel {
error: string;
estimatedTime: number;
status: "loading-model";
}
interface Error {
error: string;
status: "error";
}
interface CacheNotFound {
status: "cache not found";
}
type Result<T> = Success<T> | LoadingModel | Error | CacheNotFound;
export async function callInferenceApi<T>(
url: string,
repoId: string,
requestBody: Record<string, unknown>,
apiToken = "",
outputParsingFn: (x: unknown) => T,
waitForModel = false, // If true, the server will only respond once the model has been loaded on the inference API,
includeCredentials = false,
isOnLoadCall = false, // If true, the server will try to answer from cache and not do anything if not
useCache = true
): Promise<Result<T>> {
const contentType =
"file" in requestBody && requestBody["file"] && requestBody["file"] instanceof Blob && requestBody["file"].type
? requestBody["file"]["type"]
: "application/json";
const headers = new Headers();
headers.set("Content-Type", contentType);
if (apiToken) {
headers.set("Authorization", `Bearer ${apiToken}`);
}
if (waitForModel) {
headers.set("X-Wait-For-Model", "true");
}
if (useCache === false) {
headers.set("X-Use-Cache", "false");
}
if (isOnLoadCall) {
headers.set("X-Load-Model", "0");
}
// `File` is a subtype of `Blob`: therefore, checking for instanceof `Blob` also checks for instanceof `File`
const reqBody: Blob | string =
"file" in requestBody && requestBody["file"] instanceof Blob ? requestBody.file : JSON.stringify(requestBody);
const response = await fetch(`${url}/models/${repoId}`, {
method: "POST",
body: reqBody,
headers,
credentials: includeCredentials ? "include" : "same-origin",
});
if (response.ok) {
// Success
const computeTime = response.headers.has("x-compute-time")
? `${response.headers.get("x-compute-time")} s`
: `cached`;
const isMediaContent = (response.headers.get("content-type")?.search(/^(?:audio|image)/i) ?? -1) !== -1;
const body = !isMediaContent ? await response.json() : await response.blob();
try {
const output = outputParsingFn(body);
const outputJson = !isMediaContent ? JSON.stringify(body, null, 2) : "";
return { computeTime, output, outputJson, response, status: "success" };
} catch (e) {
if (isOnLoadCall && body.error === "not loaded yet") {
return { status: "cache not found" };
}
// Invalid output
const error = `API Implementation Error: ${String(e).replace(/^Error: /, "")}`;
return { error, status: "error" };
}
} else {
// Error
const bodyText = await response.text();
const body = parseJSON<Record<string, unknown>>(bodyText) ?? {};
if (
body["error"] &&
response.status === 503 &&
body["estimated_time"] !== null &&
body["estimated_time"] !== undefined
) {
// Model needs loading
return { error: String(body["error"]), estimatedTime: +body["estimated_time"], status: "loading-model" };
} else {
// Other errors
const { status, statusText } = response;
return {
error: String(body["error"]) || String(body["traceback"]) || `${status} ${statusText}`,
status: "error",
};
}
}
}
export async function getModelLoadInfo(
url: string,
repoId: string,
includeCredentials = false
): Promise<ModelLoadInfo> {
const response = await fetch(`${url}/status/${repoId}`, {
credentials: includeCredentials ? "include" : "same-origin",
});
const output = await response.json();
if (response.ok && typeof output === "object" && output.loaded !== undefined) {
// eslint-disable-next-line @typescript-eslint/naming-convention
const { state, compute_type } = output;
return { compute_type, state };
} else {
console.warn(response.status, output.error);
return { state: LoadState.Error };
}
}
// Extend Inference API requestBody with user supplied Inference API parameters
export function addInferenceParameters(requestBody: Record<string, unknown>, model: ModelData): void {
const inference = model?.cardData?.inference;
if (typeof inference === "object") {
const inferenceParameters = inference?.parameters;
if (inferenceParameters) {
if (requestBody.parameters) {
requestBody.parameters = { ...requestBody.parameters, ...inferenceParameters };
} else {
requestBody.parameters = inferenceParameters;
}
}
}
}
/*
* Converts table from [[Header0, Header1, Header2], [Column0Val0, Column1Val0, Column2Val0], ...]
* to {Header0: [ColumnVal0, ...], Header1: [Column1Val0, ...], Header2: [Column2Val0, ...]}
*/
export function convertTableToData(table: (string | number)[][]): TableData {
return Object.fromEntries(
table[0].map((cell, x) => {
return [
cell,
table
.slice(1)
.flat()
.filter((_, i) => i % table[0].length === x)
.map((v) => String(v)), // some models can only handle strings (no numbers)
];
})
);
}
/**
* Converts data from {Header0: [ColumnVal0, ...], Header1: [Column1Val0, ...], Header2: [Column2Val0, ...]}
* to [[Header0, Header1, Header2], [Column0Val0, Column1Val0, Column2Val0], ...]
*/
export function convertDataToTable(data: TableData): (string | number)[][] {
const dataArray = Object.entries(data); // [header, cell[]][]
const nbCols = dataArray.length;
const nbRows = (dataArray[0]?.[1]?.length ?? 0) + 1;
return Array(nbRows)
.fill("")
.map((_, y) =>
Array(nbCols)
.fill("")
.map((__, x) => (y === 0 ? dataArray[x][0] : dataArray[x][1][y - 1]))
);
}
|