File size: 2,831 Bytes
9d298eb
46d7a45
7026e84
9d298eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e094eba
9d298eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02f87b5
9d298eb
 
 
 
 
 
 
 
 
 
 
 
 
 
7787a53
9d298eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import type { PipelineType } from "./pipelines";
import type { WidgetExample } from "./widget-example";
import type { TokenizerConfig } from "./tokenizer-data";

export enum InferenceDisplayability {
	/**
	 * Yes
	 */
	Yes = "Yes",
	/**
	 * And then, all the possible reasons why it's no:
	 */
	ExplicitOptOut = "ExplicitOptOut",
	CustomCode = "CustomCode",
	LibraryNotDetected = "LibraryNotDetected",
	PipelineNotDetected = "PipelineNotDetected",
	PipelineLibraryPairNotSupported = "PipelineLibraryPairNotSupported",
}

/**
 * Public interface for model metadata
 */
export interface ModelData {
	/**
	 * id of model (e.g. 'user/repo_name')
	 */
	id: string;
	/**
	 * Kept for backward compatibility
	 */
	modelId?: string;
	/**
	 * Whether or not to enable inference widget for this model
	 */
	inference: InferenceDisplayability;
	/**
	 * is this model private?
	 */
	private?: boolean;
	/**
	 * this dictionary has useful information about the model configuration
	 */
	config?: Record<string, unknown> & {
		adapter_transformers?: { model_class?: string; model_name?: string };
		architectures?: string[];
		sklearn?: {
			filename?: string;
			model_format?: string;
		};
		speechbrain?: {
			interface?: string;
		};
		peft?: {
			base_model_name?: string;
			task_type?: string;
		};
		tokenizer_config?: TokenizerConfig;
	};
	/**
	 * all the model tags
	 */
	tags?: string[];
	/**
	 * transformers-specific info to display in the code sample.
	 */
	transformersInfo?: TransformersInfo;
	/**
	 * Pipeline type
	 */
	pipeline_tag?: PipelineType | undefined;
	/**
	 * for relevant models, get mask token
	 */
	mask_token?: string | undefined;
	/**
	 * Example data that will be fed into the widget.
	 *
	 * can be set in the model card metadata (under `widget`),
	 * or by default in `DefaultWidget.ts`
	 */
	widgetData?: WidgetExample[] | undefined;
	/**
	 * Parameters that will be used by the widget when calling Inference API (serverless)
	 * https://huggingface.co/docs/api-inference/detailed_parameters
	 *
	 * can be set in the model card metadata (under `inference/parameters`)
	 * Example:
	 * inference:
	 *     parameters:
	 *         key: val
	 */
	cardData?: {
		inference?:
			| boolean
			| {
					parameters?: Record<string, unknown>;
			  };
		base_model?: string | string[];
	};
	/**
	 * Library name
	 * Example: transformers, SpeechBrain, Stanza, etc.
	 */
	library_name?: string;
}

/**
 * transformers-specific info to display in the code sample.
 */
export interface TransformersInfo {
	/**
	 * e.g. AutoModelForSequenceClassification
	 */
	auto_model: string;
	/**
	 * if set in config.json's auto_map
	 */
	custom_class?: string;
	/**
	 * e.g. text-classification
	 */
	pipeline_tag?: PipelineType;
	/**
	 * e.g. "AutoTokenizer" | "AutoFeatureExtractor" | "AutoProcessor"
	 */
	processor?: string;
}