Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 21,061 Bytes
9d298eb b2ecf7d 0f085f2 b2ecf7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
import type { ModelData } from "./model-data";
import type { ModelLibraryKey } from "./model-libraries";
/**
* Elements configurable by a model library.
*/
export interface LibraryUiElement {
/**
* Name displayed on the main
* call-to-action button on the model page.
*/
btnLabel: string;
/**
* Repo name
*/
repoName: string;
/**
* URL to library's repo
*/
repoUrl: string;
/**
* URL to library's docs
*/
docsUrl?: string;
/**
* Code snippet displayed on model page
*/
snippets: (model: ModelData) => string[];
}
function nameWithoutNamespace(modelId: string): string {
const splitted = modelId.split("/");
return splitted.length === 1 ? splitted[0] : splitted[1];
}
//#region snippets
const adapter_transformers = (model: ModelData) => [
`from transformers import ${model.config?.adapter_transformers?.model_class}
model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
model.load_adapter("${model.id}", source="hf")`,
];
const allennlpUnknown = (model: ModelData) => [
`import allennlp_models
from allennlp.predictors.predictor import Predictor
predictor = Predictor.from_path("hf://${model.id}")`,
];
const allennlpQuestionAnswering = (model: ModelData) => [
`import allennlp_models
from allennlp.predictors.predictor import Predictor
predictor = Predictor.from_path("hf://${model.id}")
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
predictions = predictor.predict_json(predictor_input)`,
];
const allennlp = (model: ModelData) => {
if (model.tags?.includes("question-answering")) {
return allennlpQuestionAnswering(model);
}
return allennlpUnknown(model);
};
const asteroid = (model: ModelData) => [
`from asteroid.models import BaseModel
model = BaseModel.from_pretrained("${model.id}")`,
];
function get_base_diffusers_model(model: ModelData): string {
return model.cardData?.base_model ?? "fill-in-base-model";
}
const bertopic = (model: ModelData) => [
`from bertopic import BERTopic
model = BERTopic.load("${model.id}")`,
];
const diffusers_default = (model: ModelData) => [
`from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("${model.id}")`,
];
const diffusers_controlnet = (model: ModelData) => [
`from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
controlnet = ControlNetModel.from_pretrained("${model.id}")
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
"${get_base_diffusers_model(model)}", controlnet=controlnet
)`,
];
const diffusers_lora = (model: ModelData) => [
`from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
pipeline.load_lora_weights("${model.id}")`,
];
const diffusers_textual_inversion = (model: ModelData) => [
`from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
pipeline.load_textual_inversion("${model.id}")`,
];
const diffusers = (model: ModelData) => {
if (model.tags?.includes("controlnet")) {
return diffusers_controlnet(model);
} else if (model.tags?.includes("lora")) {
return diffusers_lora(model);
} else if (model.tags?.includes("textual_inversion")) {
return diffusers_textual_inversion(model);
} else {
return diffusers_default(model);
}
};
const espnetTTS = (model: ModelData) => [
`from espnet2.bin.tts_inference import Text2Speech
model = Text2Speech.from_pretrained("${model.id}")
speech, *_ = model("text to generate speech from")`,
];
const espnetASR = (model: ModelData) => [
`from espnet2.bin.asr_inference import Speech2Text
model = Speech2Text.from_pretrained(
"${model.id}"
)
speech, rate = soundfile.read("speech.wav")
text, *_ = model(speech)[0]`,
];
const espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
const espnet = (model: ModelData) => {
if (model.tags?.includes("text-to-speech")) {
return espnetTTS(model);
} else if (model.tags?.includes("automatic-speech-recognition")) {
return espnetASR(model);
}
return espnetUnknown();
};
const fairseq = (model: ModelData) => [
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"${model.id}"
)`,
];
const flair = (model: ModelData) => [
`from flair.models import SequenceTagger
tagger = SequenceTagger.load("${model.id}")`,
];
const keras = (model: ModelData) => [
`from huggingface_hub import from_pretrained_keras
model = from_pretrained_keras("${model.id}")
`,
];
const open_clip = (model: ModelData) => [
`import open_clip
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`,
];
const paddlenlp = (model: ModelData) => {
if (model.config?.architectures?.[0]) {
const architecture = model.config.architectures[0];
return [
[
`from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
"",
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${
model.private ? ", use_auth_token=True" : ""
}, from_hf_hub=True)`,
`model = ${architecture}.from_pretrained("${model.id}"${
model.private ? ", use_auth_token=True" : ""
}, from_hf_hub=True)`,
].join("\n"),
];
} else {
return [
[
`# ⚠️ Type of model unknown`,
`from paddlenlp.transformers import AutoTokenizer, AutoModel`,
"",
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${
model.private ? ", use_auth_token=True" : ""
}, from_hf_hub=True)`,
`model = AutoModel.from_pretrained("${model.id}"${
model.private ? ", use_auth_token=True" : ""
}, from_hf_hub=True)`,
].join("\n"),
];
}
};
const pyannote_audio_pipeline = (model: ModelData) => [
`from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained("${model.id}")
# inference on the whole file
pipeline("file.wav")
# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
from pyannote.audio import Audio
waveform, sample_rate = Audio().crop("file.wav", excerpt)
pipeline({"waveform": waveform, "sample_rate": sample_rate})`,
];
const pyannote_audio_model = (model: ModelData) => [
`from pyannote.audio import Model, Inference
model = Model.from_pretrained("${model.id}")
inference = Inference(model)
# inference on the whole file
inference("file.wav")
# inference on an excerpt
from pyannote.core import Segment
excerpt = Segment(start=2.0, end=5.0)
inference.crop("file.wav", excerpt)`,
];
const pyannote_audio = (model: ModelData) => {
if (model.tags?.includes("pyannote-audio-pipeline")) {
return pyannote_audio_pipeline(model);
}
return pyannote_audio_model(model);
};
const tensorflowttsTextToMel = (model: ModelData) => [
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel
processor = AutoProcessor.from_pretrained("${model.id}")
model = TFAutoModel.from_pretrained("${model.id}")
`,
];
const tensorflowttsMelToWav = (model: ModelData) => [
`from tensorflow_tts.inference import TFAutoModel
model = TFAutoModel.from_pretrained("${model.id}")
audios = model.inference(mels)
`,
];
const tensorflowttsUnknown = (model: ModelData) => [
`from tensorflow_tts.inference import TFAutoModel
model = TFAutoModel.from_pretrained("${model.id}")
`,
];
const tensorflowtts = (model: ModelData) => {
if (model.tags?.includes("text-to-mel")) {
return tensorflowttsTextToMel(model);
} else if (model.tags?.includes("mel-to-wav")) {
return tensorflowttsMelToWav(model);
}
return tensorflowttsUnknown(model);
};
const timm = (model: ModelData) => [
`import timm
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`,
];
const skopsPickle = (model: ModelData, modelFile: string) => {
return [
`import joblib
from skops.hub_utils import download
download("${model.id}", "path_to_folder")
model = joblib.load(
"${modelFile}"
)
# only load pickle files from sources you trust
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`,
];
};
const skopsFormat = (model: ModelData, modelFile: string) => {
return [
`from skops.hub_utils import download
from skops.io import load
download("${model.id}", "path_to_folder")
# make sure model file is in skops format
# if model is a pickle file, make sure it's from a source you trust
model = load("path_to_folder/${modelFile}")`,
];
};
const skopsJobLib = (model: ModelData) => {
return [
`from huggingface_hub import hf_hub_download
import joblib
model = joblib.load(
hf_hub_download("${model.id}", "sklearn_model.joblib")
)
# only load pickle files from sources you trust
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`,
];
};
const sklearn = (model: ModelData) => {
if (model.tags?.includes("skops")) {
const skopsmodelFile = model.config?.sklearn?.filename;
const skopssaveFormat = model.config?.sklearn?.model_format;
if (!skopsmodelFile) {
return [`# ⚠️ Model filename not specified in config.json`];
}
if (skopssaveFormat === "pickle") {
return skopsPickle(model, skopsmodelFile);
} else {
return skopsFormat(model, skopsmodelFile);
}
} else {
return skopsJobLib(model);
}
};
const fastai = (model: ModelData) => [
`from huggingface_hub import from_pretrained_fastai
learn = from_pretrained_fastai("${model.id}")`,
];
const sampleFactory = (model: ModelData) => [
`python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`,
];
const sentenceTransformers = (model: ModelData) => [
`from sentence_transformers import SentenceTransformer
model = SentenceTransformer("${model.id}")`,
];
const spacy = (model: ModelData) => [
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
# Using spacy.load().
import spacy
nlp = spacy.load("${nameWithoutNamespace(model.id)}")
# Importing as module.
import ${nameWithoutNamespace(model.id)}
nlp = ${nameWithoutNamespace(model.id)}.load()`,
];
const span_marker = (model: ModelData) => [
`from span_marker import SpanMarkerModel
model = SpanMarkerModel.from_pretrained("${model.id}")`,
];
const stanza = (model: ModelData) => [
`import stanza
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`,
];
const speechBrainMethod = (speechbrainInterface: string) => {
switch (speechbrainInterface) {
case "EncoderClassifier":
return "classify_file";
case "EncoderDecoderASR":
case "EncoderASR":
return "transcribe_file";
case "SpectralMaskEnhancement":
return "enhance_file";
case "SepformerSeparation":
return "separate_file";
default:
return undefined;
}
};
const speechbrain = (model: ModelData) => {
const speechbrainInterface = model.config?.speechbrain?.interface;
if (speechbrainInterface === undefined) {
return [`# interface not specified in config.json`];
}
const speechbrainMethod = speechBrainMethod(speechbrainInterface);
if (speechbrainMethod === undefined) {
return [`# interface in config.json invalid`];
}
return [
`from speechbrain.pretrained import ${speechbrainInterface}
model = ${speechbrainInterface}.from_hparams(
"${model.id}"
)
model.${speechbrainMethod}("file.wav")`,
];
};
const transformers = (model: ModelData) => {
const info = model.transformersInfo;
if (!info) {
return [`# ⚠️ Type of model unknown`];
}
const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
let autoSnippet: string;
if (info.processor) {
const varName =
info.processor === "AutoTokenizer"
? "tokenizer"
: info.processor === "AutoFeatureExtractor"
? "extractor"
: "processor";
autoSnippet = [
"# Load model directly",
`from transformers import ${info.processor}, ${info.auto_model}`,
"",
`${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
].join("\n");
} else {
autoSnippet = [
"# Load model directly",
`from transformers import ${info.auto_model}`,
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
].join("\n");
}
if (model.pipeline_tag) {
const pipelineSnippet = [
"# Use a pipeline as a high-level helper",
"from transformers import pipeline",
"",
`pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")",
].join("\n");
return [pipelineSnippet, autoSnippet];
}
return [autoSnippet];
};
const transformersJS = (model: ModelData) => {
if (!model.pipeline_tag) {
return [`// ⚠️ Unknown pipeline tag`];
}
const libName = "@xenova/transformers";
return [
`// npm i ${libName}
import { pipeline } from '${libName}';
// Allocate pipeline
const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`,
];
};
const peftTask = (peftTaskType?: string) => {
switch (peftTaskType) {
case "CAUSAL_LM":
return "CausalLM";
case "SEQ_2_SEQ_LM":
return "Seq2SeqLM";
case "TOKEN_CLS":
return "TokenClassification";
case "SEQ_CLS":
return "SequenceClassification";
default:
return undefined;
}
};
const peft = (model: ModelData) => {
const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
const pefttask = peftTask(peftTaskType);
if (!pefttask) {
return [`Task type is invalid.`];
}
if (!peftBaseModel) {
return [`Base model is not found.`];
}
return [
`from peft import PeftModel, PeftConfig
from transformers import AutoModelFor${pefttask}
config = PeftConfig.from_pretrained("${model.id}")
model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
model = PeftModel.from_pretrained(model, "${model.id}")`,
];
};
const fasttext = (model: ModelData) => [
`from huggingface_hub import hf_hub_download
import fasttext
model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`,
];
const stableBaselines3 = (model: ModelData) => [
`from huggingface_sb3 import load_from_hub
checkpoint = load_from_hub(
repo_id="${model.id}",
filename="{MODEL FILENAME}.zip",
)`,
];
const nemoDomainResolver = (domain: string, model: ModelData): string[] | undefined => {
switch (domain) {
case "ASR":
return [
`import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
transcriptions = asr_model.transcribe(["file.wav"])`,
];
default:
return undefined;
}
};
const mlAgents = (model: ModelData) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
const nemo = (model: ModelData) => {
let command: string[] | undefined = undefined;
// Resolve the tag to a nemo domain/sub-domain
if (model.tags?.includes("automatic-speech-recognition")) {
command = nemoDomainResolver("ASR", model);
}
return command ?? [`# tag did not correspond to a valid NeMo domain.`];
};
const pythae = (model: ModelData) => [
`from pythae.models import AutoModel
model = AutoModel.load_from_hf_hub("${model.id}")`,
];
//#endregion
export const MODEL_LIBRARIES_UI_ELEMENTS: Partial<Record<ModelLibraryKey, LibraryUiElement>> = {
"adapter-transformers": {
btnLabel: "Adapter Transformers",
repoName: "adapter-transformers",
repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
snippets: adapter_transformers,
},
allennlp: {
btnLabel: "AllenNLP",
repoName: "AllenNLP",
repoUrl: "https://github.com/allenai/allennlp",
docsUrl: "https://huggingface.co/docs/hub/allennlp",
snippets: allennlp,
},
asteroid: {
btnLabel: "Asteroid",
repoName: "Asteroid",
repoUrl: "https://github.com/asteroid-team/asteroid",
docsUrl: "https://huggingface.co/docs/hub/asteroid",
snippets: asteroid,
},
bertopic: {
btnLabel: "BERTopic",
repoName: "BERTopic",
repoUrl: "https://github.com/MaartenGr/BERTopic",
snippets: bertopic,
},
diffusers: {
btnLabel: "Diffusers",
repoName: "🤗/diffusers",
repoUrl: "https://github.com/huggingface/diffusers",
docsUrl: "https://huggingface.co/docs/hub/diffusers",
snippets: diffusers,
},
espnet: {
btnLabel: "ESPnet",
repoName: "ESPnet",
repoUrl: "https://github.com/espnet/espnet",
docsUrl: "https://huggingface.co/docs/hub/espnet",
snippets: espnet,
},
fairseq: {
btnLabel: "Fairseq",
repoName: "fairseq",
repoUrl: "https://github.com/pytorch/fairseq",
snippets: fairseq,
},
flair: {
btnLabel: "Flair",
repoName: "Flair",
repoUrl: "https://github.com/flairNLP/flair",
docsUrl: "https://huggingface.co/docs/hub/flair",
snippets: flair,
},
keras: {
btnLabel: "Keras",
repoName: "Keras",
repoUrl: "https://github.com/keras-team/keras",
docsUrl: "https://huggingface.co/docs/hub/keras",
snippets: keras,
},
nemo: {
btnLabel: "NeMo",
repoName: "NeMo",
repoUrl: "https://github.com/NVIDIA/NeMo",
snippets: nemo,
},
open_clip: {
btnLabel: "OpenCLIP",
repoName: "OpenCLIP",
repoUrl: "https://github.com/mlfoundations/open_clip",
snippets: open_clip,
},
paddlenlp: {
btnLabel: "paddlenlp",
repoName: "PaddleNLP",
repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
snippets: paddlenlp,
},
peft: {
btnLabel: "PEFT",
repoName: "PEFT",
repoUrl: "https://github.com/huggingface/peft",
snippets: peft,
},
"pyannote-audio": {
btnLabel: "pyannote.audio",
repoName: "pyannote-audio",
repoUrl: "https://github.com/pyannote/pyannote-audio",
snippets: pyannote_audio,
},
"sentence-transformers": {
btnLabel: "sentence-transformers",
repoName: "sentence-transformers",
repoUrl: "https://github.com/UKPLab/sentence-transformers",
docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
snippets: sentenceTransformers,
},
sklearn: {
btnLabel: "Scikit-learn",
repoName: "Scikit-learn",
repoUrl: "https://github.com/scikit-learn/scikit-learn",
snippets: sklearn,
},
fastai: {
btnLabel: "fastai",
repoName: "fastai",
repoUrl: "https://github.com/fastai/fastai",
docsUrl: "https://huggingface.co/docs/hub/fastai",
snippets: fastai,
},
spacy: {
btnLabel: "spaCy",
repoName: "spaCy",
repoUrl: "https://github.com/explosion/spaCy",
docsUrl: "https://huggingface.co/docs/hub/spacy",
snippets: spacy,
},
"span-marker": {
btnLabel: "SpanMarker",
repoName: "SpanMarkerNER",
repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
docsUrl: "https://huggingface.co/docs/hub/span_marker",
snippets: span_marker,
},
speechbrain: {
btnLabel: "speechbrain",
repoName: "speechbrain",
repoUrl: "https://github.com/speechbrain/speechbrain",
docsUrl: "https://huggingface.co/docs/hub/speechbrain",
snippets: speechbrain,
},
stanza: {
btnLabel: "Stanza",
repoName: "stanza",
repoUrl: "https://github.com/stanfordnlp/stanza",
docsUrl: "https://huggingface.co/docs/hub/stanza",
snippets: stanza,
},
tensorflowtts: {
btnLabel: "TensorFlowTTS",
repoName: "TensorFlowTTS",
repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
snippets: tensorflowtts,
},
timm: {
btnLabel: "timm",
repoName: "pytorch-image-models",
repoUrl: "https://github.com/rwightman/pytorch-image-models",
docsUrl: "https://huggingface.co/docs/hub/timm",
snippets: timm,
},
transformers: {
btnLabel: "Transformers",
repoName: "🤗/transformers",
repoUrl: "https://github.com/huggingface/transformers",
docsUrl: "https://huggingface.co/docs/hub/transformers",
snippets: transformers,
},
"transformers.js": {
btnLabel: "Transformers.js",
repoName: "transformers.js",
repoUrl: "https://github.com/xenova/transformers.js",
docsUrl: "https://huggingface.co/docs/hub/transformers-js",
snippets: transformersJS,
},
fasttext: {
btnLabel: "fastText",
repoName: "fastText",
repoUrl: "https://fasttext.cc/",
snippets: fasttext,
},
"sample-factory": {
btnLabel: "sample-factory",
repoName: "sample-factory",
repoUrl: "https://github.com/alex-petrenko/sample-factory",
docsUrl: "https://huggingface.co/docs/hub/sample-factory",
snippets: sampleFactory,
},
"stable-baselines3": {
btnLabel: "stable-baselines3",
repoName: "stable-baselines3",
repoUrl: "https://github.com/huggingface/huggingface_sb3",
docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
snippets: stableBaselines3,
},
"ml-agents": {
btnLabel: "ml-agents",
repoName: "ml-agents",
repoUrl: "https://github.com/huggingface/ml-agents",
docsUrl: "https://huggingface.co/docs/hub/ml-agents",
snippets: mlAgents,
},
pythae: {
btnLabel: "pythae",
repoName: "pythae",
repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
snippets: pythae,
},
} as const;
|