Spaces:
				
			
			
	
			
			
					
		Running
		
			on 
			
			CPU Upgrade
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
			on 
			
			CPU Upgrade
	File size: 4,510 Bytes
			
			9d298eb b2ecf7d 767bfd8 b2ecf7d 767bfd8 b2ecf7d 767bfd8 b2ecf7d  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132  | 
								import type { ModelData } from "../model-data.js";
import type { PipelineType } from "../pipelines.js";
import { getModelInputSnippet } from "./inputs.js";
export const snippetZeroShotClassification = (model: ModelData): string =>
	`def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()
output = query({
    "inputs": ${getModelInputSnippet(model)},
    "parameters": {"candidate_labels": ["refund", "legal", "faq"]},
})`;
export const snippetZeroShotImageClassification = (model: ModelData): string =>
	`def query(data):
	with open(data["image_path"], "rb") as f:
		img = f.read()
	payload={
		"parameters": data["parameters"],
		"inputs": base64.b64encode(img).decode("utf-8")
	}
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()
output = query({
    "image_path": ${getModelInputSnippet(model)},
    "parameters": {"candidate_labels": ["cat", "dog", "llama"]},
})`;
export const snippetBasic = (model: ModelData): string =>
	`def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()
	
output = query({
	"inputs": ${getModelInputSnippet(model)},
})`;
export const snippetFile = (model: ModelData): string =>
	`def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()
output = query(${getModelInputSnippet(model)})`;
export const snippetTextToImage = (model: ModelData): string =>
	`def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.content
image_bytes = query({
	"inputs": ${getModelInputSnippet(model)},
})
# You can access the image with PIL.Image for example
import io
from PIL import Image
image = Image.open(io.BytesIO(image_bytes))`;
export const snippetTextToAudio = (model: ModelData): string => {
	// Transformers TTS pipeline and api-inference-community (AIC) pipeline outputs are diverged
	// with the latest update to inference-api (IA).
	// Transformers IA returns a byte object (wav file), whereas AIC returns wav and sampling_rate.
	if (model.library_name === "transformers") {
		return `def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.content
audio_bytes = query({
	"inputs": ${getModelInputSnippet(model)},
})
# You can access the audio with IPython.display for example
from IPython.display import Audio
Audio(audio_bytes)`;
	} else {
		return `def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()
	
audio, sampling_rate = query({
	"inputs": ${getModelInputSnippet(model)},
})
# You can access the audio with IPython.display for example
from IPython.display import Audio
Audio(audio, rate=sampling_rate)`;
	}
};
export const pythonSnippets: Partial<Record<PipelineType, (model: ModelData) => string>> = {
	// Same order as in tasks/src/pipelines.ts
	"text-classification": snippetBasic,
	"token-classification": snippetBasic,
	"table-question-answering": snippetBasic,
	"question-answering": snippetBasic,
	"zero-shot-classification": snippetZeroShotClassification,
	translation: snippetBasic,
	summarization: snippetBasic,
	conversational: snippetBasic,
	"feature-extraction": snippetBasic,
	"text-generation": snippetBasic,
	"text2text-generation": snippetBasic,
	"fill-mask": snippetBasic,
	"sentence-similarity": snippetBasic,
	"automatic-speech-recognition": snippetFile,
	"text-to-image": snippetTextToImage,
	"text-to-speech": snippetTextToAudio,
	"text-to-audio": snippetTextToAudio,
	"audio-to-audio": snippetFile,
	"audio-classification": snippetFile,
	"image-classification": snippetFile,
	"object-detection": snippetFile,
	"image-segmentation": snippetFile,
	"image-to-text": snippetFile,
	"zero-shot-image-classification": snippetZeroShotImageClassification,
};
export function getPythonInferenceSnippet(model: ModelData, accessToken: string): string {
	const body =
		model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
	return `import requests
API_URL = "https://api-inference.huggingface.co/models/${model.id}"
headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
${body}`;
}
export function hasPythonInferenceSnippet(model: ModelData): boolean {
	return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
}
 |