File size: 3,046 Bytes
b2ecf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import type { TaskDataCustom } from "../Types";

const taskData: TaskDataCustom = {
	datasets: [
		{
			description: "Synthetic dataset, for image relighting",
			id: "VIDIT",
		},
		{
			description: "Multiple images of celebrities, used for facial expression translation",
			id: "huggan/CelebA-faces",
		},
	],
	demo: {
		inputs: [
			{
				filename: "image-to-image-input.jpeg",
				type: "img",
			},
		],
		outputs: [
			{
				filename: "image-to-image-output.png",
				type: "img",
			},
		],
	},
	isPlaceholder: false,
	metrics: [
		{
			description:
				"Peak Signal to Noise Ratio (PSNR) is an approximation of the human perception, considering the ratio of the absolute intensity with respect to the variations. Measured in dB, a high value indicates a high fidelity.",
			id: "PSNR",
		},
		{
			description:
				"Structural Similarity Index (SSIM) is a perceptual metric which compares the luminance, contrast and structure of two images. The values of SSIM range between -1 and 1, and higher values indicate closer resemblance to the original image.",
			id: "SSIM",
		},
		{
			description:
				"Inception Score (IS) is an analysis of the labels predicted by an image classification model when presented with a sample of the generated images.",
			id: "IS",
		},
	],
	models: [
		{
			description: "A model that enhances images captured in low light conditions.",
			id: "keras-io/low-light-image-enhancement",
		},
		{
			description: "A model that increases the resolution of an image.",
			id: "keras-io/super-resolution",
		},
		{
			description:
				"A model that creates a set of variations of the input image in the style of DALL-E using Stable Diffusion.",
			id: "lambdalabs/sd-image-variations-diffusers",
		},
		{
			description: "A model that generates images based on segments in the input image and the text prompt.",
			id: "mfidabel/controlnet-segment-anything",
		},
		{
			description: "A model that takes an image and an instruction to edit the image.",
			id: "timbrooks/instruct-pix2pix",
		},
	],
	spaces: [
		{
			description: "Image enhancer application for low light.",
			id: "keras-io/low-light-image-enhancement",
		},
		{
			description: "Style transfer application.",
			id: "keras-io/neural-style-transfer",
		},
		{
			description: "An application that generates images based on segment control.",
			id: "mfidabel/controlnet-segment-anything",
		},
		{
			description: "Image generation application that takes image control and text prompt.",
			id: "hysts/ControlNet",
		},
		{
			description: "Colorize any image using this app.",
			id: "ioclab/brightness-controlnet",
		},
		{
			description: "Edit images with instructions.",
			id: "timbrooks/instruct-pix2pix",
		},
	],
	summary:
		"Image-to-image is the task of transforming a source image to match the characteristics of a target image or a target image domain. Any image manipulation and enhancement is possible with image to image models.",
	widgetModels: ["lllyasviel/sd-controlnet-canny"],
	youtubeId: "",
};

export default taskData;