Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,491 Bytes
b2ecf7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import type { TaskDataCustom } from "../Types";
const taskData: TaskDataCustom = {
datasets: [
{
description: "A benchmark of 10 different audio tasks.",
id: "superb",
},
],
demo: {
inputs: [
{
filename: "audio.wav",
type: "audio",
},
],
outputs: [
{
data: [
{
label: "Up",
score: 0.2,
},
{
label: "Down",
score: 0.8,
},
],
type: "chart",
},
],
},
metrics: [
{
description: "",
id: "accuracy",
},
{
description: "",
id: "recall",
},
{
description: "",
id: "precision",
},
{
description: "",
id: "f1",
},
],
models: [
{
description: "An easy-to-use model for Command Recognition.",
id: "speechbrain/google_speech_command_xvector",
},
{
description: "An Emotion Recognition model.",
id: "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition",
},
{
description: "A language identification model.",
id: "facebook/mms-lid-126",
},
],
spaces: [
{
description: "An application that can predict the language spoken in a given audio.",
id: "akhaliq/Speechbrain-audio-classification",
},
],
summary:
"Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
widgetModels: ["facebook/mms-lid-126"],
youtubeId: "KWwzcmG98Ds",
};
export default taskData;
|