File size: 1,491 Bytes
b2ecf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import type { TaskDataCustom } from "../Types";

const taskData: TaskDataCustom = {
	datasets: [
		{
			description: "A benchmark of 10 different audio tasks.",
			id: "superb",
		},
	],
	demo: {
		inputs: [
			{
				filename: "audio.wav",
				type: "audio",
			},
		],
		outputs: [
			{
				data: [
					{
						label: "Up",
						score: 0.2,
					},
					{
						label: "Down",
						score: 0.8,
					},
				],
				type: "chart",
			},
		],
	},
	metrics: [
		{
			description: "",
			id: "accuracy",
		},
		{
			description: "",
			id: "recall",
		},
		{
			description: "",
			id: "precision",
		},
		{
			description: "",
			id: "f1",
		},
	],
	models: [
		{
			description: "An easy-to-use model for Command Recognition.",
			id: "speechbrain/google_speech_command_xvector",
		},
		{
			description: "An Emotion Recognition model.",
			id: "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition",
		},
		{
			description: "A language identification model.",
			id: "facebook/mms-lid-126",
		},
	],
	spaces: [
		{
			description: "An application that can predict the language spoken in a given audio.",
			id: "akhaliq/Speechbrain-audio-classification",
		},
	],
	summary:
		"Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
	widgetModels: ["facebook/mms-lid-126"],
	youtubeId: "KWwzcmG98Ds",
};

export default taskData;