File size: 5,339 Bytes
9d298eb
b2ecf7d
5ee3e16
b2ecf7d
5ee3e16
b2ecf7d
 
 
 
 
 
 
 
 
5ee3e16
767bfd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ee3e16
b2ecf7d
 
 
 
 
 
 
 
5ee3e16
b2ecf7d
 
 
 
 
 
 
 
5ee3e16
b2ecf7d
 
 
 
 
 
 
 
 
 
 
5ee3e16
58b8b64
 
 
 
 
 
 
5ee3e16
b2ecf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a75df8
5ee3e16
0a75df8
 
 
 
 
 
 
 
 
 
 
5ee3e16
767bfd8
b2ecf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58b8b64
 
b2ecf7d
 
0a75df8
767bfd8
 
b2ecf7d
 
5ee3e16
b2ecf7d
 
 
 
 
 
 
 
 
 
 
5ee3e16
b2ecf7d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import type { PipelineType } from "../pipelines.js";
import { getModelInputSnippet } from "./inputs.js";
import type { ModelDataMinimal } from "./types.js";

export const snippetZeroShotClassification = (model: ModelDataMinimal): string =>
	`def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()

output = query({
    "inputs": ${getModelInputSnippet(model)},
    "parameters": {"candidate_labels": ["refund", "legal", "faq"]},
})`;

export const snippetZeroShotImageClassification = (model: ModelDataMinimal): string =>
	`def query(data):
	with open(data["image_path"], "rb") as f:
		img = f.read()
	payload={
		"parameters": data["parameters"],
		"inputs": base64.b64encode(img).decode("utf-8")
	}
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()

output = query({
    "image_path": ${getModelInputSnippet(model)},
    "parameters": {"candidate_labels": ["cat", "dog", "llama"]},
})`;

export const snippetBasic = (model: ModelDataMinimal): string =>
	`def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()
	
output = query({
	"inputs": ${getModelInputSnippet(model)},
})`;

export const snippetFile = (model: ModelDataMinimal): string =>
	`def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()

output = query(${getModelInputSnippet(model)})`;

export const snippetTextToImage = (model: ModelDataMinimal): string =>
	`def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.content
image_bytes = query({
	"inputs": ${getModelInputSnippet(model)},
})
# You can access the image with PIL.Image for example
import io
from PIL import Image
image = Image.open(io.BytesIO(image_bytes))`;

export const snippetTabular = (model: ModelDataMinimal): string =>
	`def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.content
response = query({
	"inputs": {"data": ${getModelInputSnippet(model)}},
})`;

export const snippetTextToAudio = (model: ModelDataMinimal): string => {
	// Transformers TTS pipeline and api-inference-community (AIC) pipeline outputs are diverged
	// with the latest update to inference-api (IA).
	// Transformers IA returns a byte object (wav file), whereas AIC returns wav and sampling_rate.
	if (model.library_name === "transformers") {
		return `def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.content

audio_bytes = query({
	"inputs": ${getModelInputSnippet(model)},
})
# You can access the audio with IPython.display for example
from IPython.display import Audio
Audio(audio_bytes)`;
	} else {
		return `def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()
	
audio, sampling_rate = query({
	"inputs": ${getModelInputSnippet(model)},
})
# You can access the audio with IPython.display for example
from IPython.display import Audio
Audio(audio, rate=sampling_rate)`;
	}
};

export const snippetDocumentQuestionAnswering = (model: ModelDataMinimal): string =>
	`def query(payload):
 	with open(payload["image"], "rb") as f:
  		img = f.read()
		payload["image"] = base64.b64encode(img).decode("utf-8")  
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()

output = query({
    "inputs": ${getModelInputSnippet(model)},
})`;

export const pythonSnippets: Partial<Record<PipelineType, (model: ModelDataMinimal) => string>> = {
	// Same order as in tasks/src/pipelines.ts
	"text-classification": snippetBasic,
	"token-classification": snippetBasic,
	"table-question-answering": snippetBasic,
	"question-answering": snippetBasic,
	"zero-shot-classification": snippetZeroShotClassification,
	translation: snippetBasic,
	summarization: snippetBasic,
	"feature-extraction": snippetBasic,
	"text-generation": snippetBasic,
	"text2text-generation": snippetBasic,
	"fill-mask": snippetBasic,
	"sentence-similarity": snippetBasic,
	"automatic-speech-recognition": snippetFile,
	"text-to-image": snippetTextToImage,
	"text-to-speech": snippetTextToAudio,
	"text-to-audio": snippetTextToAudio,
	"audio-to-audio": snippetFile,
	"audio-classification": snippetFile,
	"image-classification": snippetFile,
	"tabular-regression": snippetTabular,
	"tabular-classification": snippetTabular,
	"object-detection": snippetFile,
	"image-segmentation": snippetFile,
	"document-question-answering": snippetDocumentQuestionAnswering,
	"image-to-text": snippetFile,
	"zero-shot-image-classification": snippetZeroShotImageClassification,
};

export function getPythonInferenceSnippet(model: ModelDataMinimal, accessToken: string): string {
	const body =
		model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";

	return `import requests

API_URL = "https://api-inference.huggingface.co/models/${model.id}"
headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}

${body}`;
}

export function hasPythonInferenceSnippet(model: ModelDataMinimal): boolean {
	return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
}