Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,339 Bytes
9d298eb b2ecf7d 5ee3e16 b2ecf7d 5ee3e16 b2ecf7d 5ee3e16 767bfd8 5ee3e16 b2ecf7d 5ee3e16 b2ecf7d 5ee3e16 b2ecf7d 5ee3e16 58b8b64 5ee3e16 b2ecf7d 0a75df8 5ee3e16 0a75df8 5ee3e16 767bfd8 b2ecf7d 58b8b64 b2ecf7d 0a75df8 767bfd8 b2ecf7d 5ee3e16 b2ecf7d 5ee3e16 b2ecf7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import type { PipelineType } from "../pipelines.js";
import { getModelInputSnippet } from "./inputs.js";
import type { ModelDataMinimal } from "./types.js";
export const snippetZeroShotClassification = (model: ModelDataMinimal): string =>
`def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": ${getModelInputSnippet(model)},
"parameters": {"candidate_labels": ["refund", "legal", "faq"]},
})`;
export const snippetZeroShotImageClassification = (model: ModelDataMinimal): string =>
`def query(data):
with open(data["image_path"], "rb") as f:
img = f.read()
payload={
"parameters": data["parameters"],
"inputs": base64.b64encode(img).decode("utf-8")
}
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"image_path": ${getModelInputSnippet(model)},
"parameters": {"candidate_labels": ["cat", "dog", "llama"]},
})`;
export const snippetBasic = (model: ModelDataMinimal): string =>
`def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": ${getModelInputSnippet(model)},
})`;
export const snippetFile = (model: ModelDataMinimal): string =>
`def query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, data=data)
return response.json()
output = query(${getModelInputSnippet(model)})`;
export const snippetTextToImage = (model: ModelDataMinimal): string =>
`def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
image_bytes = query({
"inputs": ${getModelInputSnippet(model)},
})
# You can access the image with PIL.Image for example
import io
from PIL import Image
image = Image.open(io.BytesIO(image_bytes))`;
export const snippetTabular = (model: ModelDataMinimal): string =>
`def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
response = query({
"inputs": {"data": ${getModelInputSnippet(model)}},
})`;
export const snippetTextToAudio = (model: ModelDataMinimal): string => {
// Transformers TTS pipeline and api-inference-community (AIC) pipeline outputs are diverged
// with the latest update to inference-api (IA).
// Transformers IA returns a byte object (wav file), whereas AIC returns wav and sampling_rate.
if (model.library_name === "transformers") {
return `def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
audio_bytes = query({
"inputs": ${getModelInputSnippet(model)},
})
# You can access the audio with IPython.display for example
from IPython.display import Audio
Audio(audio_bytes)`;
} else {
return `def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
audio, sampling_rate = query({
"inputs": ${getModelInputSnippet(model)},
})
# You can access the audio with IPython.display for example
from IPython.display import Audio
Audio(audio, rate=sampling_rate)`;
}
};
export const snippetDocumentQuestionAnswering = (model: ModelDataMinimal): string =>
`def query(payload):
with open(payload["image"], "rb") as f:
img = f.read()
payload["image"] = base64.b64encode(img).decode("utf-8")
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": ${getModelInputSnippet(model)},
})`;
export const pythonSnippets: Partial<Record<PipelineType, (model: ModelDataMinimal) => string>> = {
// Same order as in tasks/src/pipelines.ts
"text-classification": snippetBasic,
"token-classification": snippetBasic,
"table-question-answering": snippetBasic,
"question-answering": snippetBasic,
"zero-shot-classification": snippetZeroShotClassification,
translation: snippetBasic,
summarization: snippetBasic,
"feature-extraction": snippetBasic,
"text-generation": snippetBasic,
"text2text-generation": snippetBasic,
"fill-mask": snippetBasic,
"sentence-similarity": snippetBasic,
"automatic-speech-recognition": snippetFile,
"text-to-image": snippetTextToImage,
"text-to-speech": snippetTextToAudio,
"text-to-audio": snippetTextToAudio,
"audio-to-audio": snippetFile,
"audio-classification": snippetFile,
"image-classification": snippetFile,
"tabular-regression": snippetTabular,
"tabular-classification": snippetTabular,
"object-detection": snippetFile,
"image-segmentation": snippetFile,
"document-question-answering": snippetDocumentQuestionAnswering,
"image-to-text": snippetFile,
"zero-shot-image-classification": snippetZeroShotImageClassification,
};
export function getPythonInferenceSnippet(model: ModelDataMinimal, accessToken: string): string {
const body =
model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
return `import requests
API_URL = "https://api-inference.huggingface.co/models/${model.id}"
headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
${body}`;
}
export function hasPythonInferenceSnippet(model: ModelDataMinimal): boolean {
return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
}
|