Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,361 Bytes
94753b6 b2041e0 94753b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import { InferenceOutputError } from "../../lib/InferenceOutputError";
import type { BaseArgs, Options } from "../../types";
import { request } from "../custom/request";
/**
* Inputs for Text Generation inference
*/
export interface TextGenerationInput {
/**
* The text to initialize generation with
*/
inputs: string;
/**
* Additional inference parameters
*/
parameters?: TextGenerationParameters;
/**
* Whether to stream output tokens
*/
stream?: boolean;
[property: string]: unknown;
}
/**
* Additional inference parameters
*
* Additional inference parameters for Text Generation
*/
export interface TextGenerationParameters {
/**
* The number of sampling queries to run. Only the best one (in terms of total logprob) will
* be returned.
*/
best_of?: number;
/**
* Whether or not to output decoder input details
*/
decoder_input_details?: boolean;
/**
* Whether or not to output details
*/
details?: boolean;
/**
* Whether to use logits sampling instead of greedy decoding when generating new tokens.
*/
do_sample?: boolean;
/**
* The maximum number of tokens to generate.
*/
max_new_tokens?: number;
/**
* The parameter for repetition penalty. A value of 1.0 means no penalty. See [this
* paper](https://hf.co/papers/1909.05858) for more details.
*/
repetition_penalty?: number;
/**
* Whether to prepend the prompt to the generated text.
*/
return_full_text?: boolean;
/**
* The random sampling seed.
*/
seed?: number;
/**
* Stop generating tokens if a member of `stop_sequences` is generated.
*/
stop_sequences?: string[];
/**
* The value used to modulate the logits distribution.
*/
temperature?: number;
/**
* The number of highest probability vocabulary tokens to keep for top-k-filtering.
*/
top_k?: number;
/**
* If set to < 1, only the smallest set of most probable tokens with probabilities that add
* up to `top_p` or higher are kept for generation.
*/
top_p?: number;
/**
* Truncate input tokens to the given size.
*/
truncate?: number;
/**
* Typical Decoding mass. See [Typical Decoding for Natural Language
* Generation](https://hf.co/papers/2202.00666) for more information
*/
typical_p?: number;
/**
* Watermarking with [A Watermark for Large Language Models](https://hf.co/papers/2301.10226)
*/
watermark?: boolean;
[property: string]: unknown;
}
/**
* Outputs for Text Generation inference
*/
export interface TextGenerationOutput {
/**
* When enabled, details about the generation
*/
details?: TextGenerationOutputDetails;
/**
* The generated text
*/
generated_text: string;
[property: string]: unknown;
}
/**
* When enabled, details about the generation
*/
export interface TextGenerationOutputDetails {
/**
* Details about additional sequences when best_of is provided
*/
best_of_sequences?: TextGenerationOutputSequenceDetails[];
/**
* The reason why the generation was stopped.
*/
finish_reason: TextGenerationFinishReason;
/**
* The number of generated tokens
*/
generated_tokens: number;
prefill: TextGenerationPrefillToken[];
/**
* The random seed used for generation
*/
seed?: number;
/**
* The generated tokens and associated details
*/
tokens: TextGenerationOutputToken[];
/**
* Most likely tokens
*/
top_tokens?: Array<TextGenerationOutputToken[]>;
[property: string]: unknown;
}
export interface TextGenerationOutputSequenceDetails {
finish_reason: TextGenerationFinishReason;
/**
* The generated text
*/
generated_text: string;
/**
* The number of generated tokens
*/
generated_tokens: number;
prefill: TextGenerationPrefillToken[];
/**
* The random seed used for generation
*/
seed?: number;
/**
* The generated tokens and associated details
*/
tokens: TextGenerationOutputToken[];
/**
* Most likely tokens
*/
top_tokens?: Array<TextGenerationOutputToken[]>;
[property: string]: unknown;
}
export interface TextGenerationPrefillToken {
id: number;
logprob: number;
/**
* The text associated with that token
*/
text: string;
[property: string]: unknown;
}
/**
* Generated token.
*/
export interface TextGenerationOutputToken {
id: number;
logprob?: number;
/**
* Whether or not that token is a special one
*/
special: boolean;
/**
* The text associated with that token
*/
text: string;
[property: string]: unknown;
}
/**
* The reason why the generation was stopped.
*
* length: The generated sequence reached the maximum allowed length
*
* eos_token: The model generated an end-of-sentence (EOS) token
*
* stop_sequence: One of the sequence in stop_sequences was generated
*/
export type TextGenerationFinishReason = "length" | "eos_token" | "stop_sequence";
/**
* Use to continue text from a prompt. This is a very generic task. Recommended model: gpt2 (it’s a simple model, but fun to play with).
*/
export async function textGeneration(
args: BaseArgs & TextGenerationInput,
options?: Options
): Promise<TextGenerationOutput> {
const res = await request<TextGenerationOutput[]>(args, {
...options,
taskHint: "text-generation",
});
const isValidOutput = Array.isArray(res) && res.every((x) => typeof x?.generated_text === "string");
if (!isValidOutput) {
throw new InferenceOutputError("Expected Array<{generated_text: string}>");
}
return res?.[0];
}
|