Commit
·
99e7a02
1
Parent(s):
f4adb38
up
Browse files
app.py
CHANGED
@@ -22,7 +22,7 @@ from transformers.models.auto.modeling_auto import (
|
|
22 |
|
23 |
audio_models = list(MODEL_FOR_CTC_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.keys())
|
24 |
|
25 |
-
vision_models = list(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES.keys()) + list(MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES.keys()) + list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES.keys())
|
26 |
|
27 |
today = datetime.date.today()
|
28 |
year, week, _ = today.isocalendar()
|
@@ -33,6 +33,10 @@ DATASET_REPO_URL = (
|
|
33 |
DATA_FILENAME = f"data_{week}_{year}.csv"
|
34 |
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
35 |
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def retrieve_model_stats():
|
38 |
hf_api = HfApi()
|
@@ -86,10 +90,10 @@ def retrieve_model_stats():
|
|
86 |
return result
|
87 |
|
88 |
|
89 |
-
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL)
|
90 |
|
91 |
if not os.path.isfile(DATA_FILE):
|
92 |
-
|
93 |
result = retrieve_model_stats()
|
94 |
|
95 |
if not os.path.isfile(DATA_FILE):
|
@@ -107,7 +111,8 @@ int_downloads = np.array(
|
|
107 |
[int(x.replace(",", "")) for x in dataframe["num_downloads"].values]
|
108 |
)
|
109 |
|
110 |
-
st.title(f"
|
|
|
111 |
# print top 20 downloads
|
112 |
source = pd.DataFrame(
|
113 |
{
|
@@ -144,15 +149,15 @@ bar_chart = (
|
|
144 |
st.title("Bottom 20 downloads last 30 days")
|
145 |
st.altair_chart(bar_chart, use_container_width=True)
|
146 |
|
147 |
-
# print
|
148 |
-
|
149 |
-
|
150 |
-
[int(x.replace(",", "")) for x in
|
151 |
)
|
152 |
source = pd.DataFrame(
|
153 |
{
|
154 |
-
"Number of total downloads":
|
155 |
-
"Model architecture name":
|
156 |
}
|
157 |
)
|
158 |
bar_chart = (
|
@@ -163,18 +168,18 @@ bar_chart = (
|
|
163 |
x=alt.X("Model architecture name", sort=None),
|
164 |
)
|
165 |
)
|
166 |
-
st.title("
|
167 |
st.altair_chart(bar_chart, use_container_width=True)
|
168 |
|
169 |
-
# print
|
170 |
-
|
171 |
-
|
172 |
-
[int(x.replace(",", "")) for x in
|
173 |
)
|
174 |
source = pd.DataFrame(
|
175 |
{
|
176 |
-
"Number of total downloads":
|
177 |
-
"Model architecture name":
|
178 |
}
|
179 |
)
|
180 |
bar_chart = (
|
@@ -185,16 +190,15 @@ bar_chart = (
|
|
185 |
x=alt.X("Model architecture name", sort=None),
|
186 |
)
|
187 |
)
|
188 |
-
st.title("
|
189 |
st.altair_chart(bar_chart, use_container_width=True)
|
190 |
|
191 |
-
|
192 |
# print all stats
|
193 |
st.title("All stats last 30 days")
|
194 |
st.table(dataframe)
|
195 |
|
196 |
-
st.title("
|
197 |
-
st.table(dataframe[dataframe["modality"] == "audio"])
|
198 |
-
|
199 |
-
st.title("All vision stats last 30 days")
|
200 |
st.table(dataframe[dataframe["modality"] == "vision"])
|
|
|
|
|
|
|
|
22 |
|
23 |
audio_models = list(MODEL_FOR_CTC_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.keys())
|
24 |
|
25 |
+
vision_models = ["clip"] + list(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES.keys()) + list(MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES.keys()) + list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES.keys())
|
26 |
|
27 |
today = datetime.date.today()
|
28 |
year, week, _ = today.isocalendar()
|
|
|
33 |
DATA_FILENAME = f"data_{week}_{year}.csv"
|
34 |
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
35 |
|
36 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
37 |
+
|
38 |
+
print("is none?", HF_TOKEN is None)
|
39 |
+
|
40 |
|
41 |
def retrieve_model_stats():
|
42 |
hf_api = HfApi()
|
|
|
90 |
return result
|
91 |
|
92 |
|
93 |
+
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN)
|
94 |
|
95 |
if not os.path.isfile(DATA_FILE):
|
96 |
+
st.title("You are the first this week!!! Please wait until the new data is generated and written")
|
97 |
result = retrieve_model_stats()
|
98 |
|
99 |
if not os.path.isfile(DATA_FILE):
|
|
|
111 |
[int(x.replace(",", "")) for x in dataframe["num_downloads"].values]
|
112 |
)
|
113 |
|
114 |
+
st.title(f"Stats for year {year} and week {week}")
|
115 |
+
|
116 |
# print top 20 downloads
|
117 |
source = pd.DataFrame(
|
118 |
{
|
|
|
149 |
st.title("Bottom 20 downloads last 30 days")
|
150 |
st.altair_chart(bar_chart, use_container_width=True)
|
151 |
|
152 |
+
# print vision
|
153 |
+
df_vision = dataframe[dataframe["modality"] == "vision"]
|
154 |
+
vision_int_downloads = np.array(
|
155 |
+
[int(x.replace(",", "")) for x in df_vision["num_downloads"].values]
|
156 |
)
|
157 |
source = pd.DataFrame(
|
158 |
{
|
159 |
+
"Number of total downloads": vision_int_downloads,
|
160 |
+
"Model architecture name": df_vision["model_names"].values,
|
161 |
}
|
162 |
)
|
163 |
bar_chart = (
|
|
|
168 |
x=alt.X("Model architecture name", sort=None),
|
169 |
)
|
170 |
)
|
171 |
+
st.title("Vision downloads last 30 days")
|
172 |
st.altair_chart(bar_chart, use_container_width=True)
|
173 |
|
174 |
+
# print audio
|
175 |
+
df_audio = dataframe[dataframe["modality"] == "audio"]
|
176 |
+
audio_int_downloads = np.array(
|
177 |
+
[int(x.replace(",", "")) for x in df_audio["num_downloads"].values]
|
178 |
)
|
179 |
source = pd.DataFrame(
|
180 |
{
|
181 |
+
"Number of total downloads": audio_int_downloads,
|
182 |
+
"Model architecture name": df_audio["model_names"].values,
|
183 |
}
|
184 |
)
|
185 |
bar_chart = (
|
|
|
190 |
x=alt.X("Model architecture name", sort=None),
|
191 |
)
|
192 |
)
|
193 |
+
st.title("Audio downloads last 30 days")
|
194 |
st.altair_chart(bar_chart, use_container_width=True)
|
195 |
|
|
|
196 |
# print all stats
|
197 |
st.title("All stats last 30 days")
|
198 |
st.table(dataframe)
|
199 |
|
200 |
+
st.title("Vision stats last 30 days")
|
|
|
|
|
|
|
201 |
st.table(dataframe[dataframe["modality"] == "vision"])
|
202 |
+
|
203 |
+
st.title("Audio stats last 30 days")
|
204 |
+
st.table(dataframe[dataframe["modality"] == "audio"])
|