|
import streamlit as st |
|
|
|
from huggingface_hub import HfApi |
|
import pandas |
|
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES |
|
|
|
hf_api = HfApi() |
|
all_stats = {} |
|
total_downloads = 0 |
|
|
|
for model_name in list(CONFIG_MAPPING_NAMES.keys())[:2]: |
|
model_stats = {"num_downloads": 0, "%_of_all_downloads": 0, "num_models": 0, "download_per_model": 0} |
|
models = hf_api.list_models(filter=model_name) |
|
|
|
model_stats["num_models"] = len(models) |
|
model_stats["num_downloads"] = sum([m.downloads for m in models if hasattr(m, "downloads")]) |
|
if len(models) > 0: |
|
model_stats["download_per_model"] = round(model_stats["num_downloads"] / len(models), 2) |
|
total_downloads += model_stats["num_downloads"] |
|
|
|
|
|
all_stats[model_name] = model_stats |
|
|
|
|
|
for model_name in list(CONFIG_MAPPING_NAMES.keys()): |
|
all_stats[model_name]["%_of_all_downloads"] = round(all_stats[model_name]["num_downloads"] / total_downloads, 5) * 100 |
|
downloads = all_stats[model_name]["num_downloads"] |
|
all_stats[model_name]["num_downloads"] = f"{downloads:,}" |
|
|
|
|
|
sorted_results = dict(reversed(sorted(all_stats.items(), key=lambda d: d[1]["%_of_all_downloads"]))) |
|
dataframe = pandas.DataFrame.from_dict(sorted_results, orient="index") |
|
result = dataframe.to_string() |
|
|
|
with open("result.txt", "w") as f: |
|
f.write(result) |
|
|
|
st.table(dataframe) |
|
|