Spaces:
Runtime error
Runtime error
Commit
·
611e98e
1
Parent(s):
58d483d
chinese visu
Browse files- .gitattributes +2 -0
- app.py +117 -71
- en_examples_with_stats.json +3 -0
- zh_examples_with_stats.json +3 -0
.gitattributes
CHANGED
|
@@ -27,3 +27,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
*.jsonl filter=lfs diff=lfs merge=lfs -text
|
| 29 |
*.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
*.jsonl filter=lfs diff=lfs merge=lfs -text
|
| 29 |
*.json filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
en_examples_with_stats.json filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
zh_examples_with_stats.json filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -15,7 +15,13 @@ import matplotlib.pyplot as plt
|
|
| 15 |
|
| 16 |
class Visualization:
|
| 17 |
def __init__(
|
| 18 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
):
|
| 20 |
self.path_instructions = path_instructions
|
| 21 |
self.path_data = path_data
|
|
@@ -25,17 +31,25 @@ class Visualization:
|
|
| 25 |
self.max_len_text_display = max_len_text_display
|
| 26 |
|
| 27 |
def preamble(self):
|
| 28 |
-
st.markdown(
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
def get_binary_file_downloader_html(bin_file, file_label=
|
| 31 |
-
with open(bin_file,
|
| 32 |
data = f.read()
|
| 33 |
bin_str = base64.b64encode(data).decode()
|
| 34 |
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
| 35 |
return href
|
| 36 |
|
| 37 |
-
st.markdown(
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def open_data(self):
|
| 40 |
with open(self.path_data) as json_file:
|
| 41 |
data = json.load(json_file)
|
|
@@ -43,13 +57,17 @@ class Visualization:
|
|
| 43 |
self.num_docs = min(self.num_docs, len(data))
|
| 44 |
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
docs = data[: self.num_docs]
|
| 51 |
for doc in docs:
|
| 52 |
-
|
|
|
|
| 53 |
if len(doc["text"]) > self.max_len_text_display:
|
| 54 |
doc["text"] = (
|
| 55 |
doc["text"][: self.max_len_text_display]
|
|
@@ -179,82 +197,103 @@ class Visualization:
|
|
| 179 |
"Click on a column to sort by it, place the cursor on the text to display it."
|
| 180 |
)
|
| 181 |
st.dataframe(displayed_docs)
|
| 182 |
-
|
| 183 |
display_dataset(np.invert(all_conds), "Discarded documents")
|
| 184 |
|
| 185 |
-
#st.subheader("Display discarded documents by filter")
|
| 186 |
-
display_discarded_documents_by_filter = st.checkbox(
|
|
|
|
|
|
|
| 187 |
|
| 188 |
if display_discarded_documents_by_filter:
|
| 189 |
columns = list(self.docs)
|
| 190 |
|
| 191 |
if "number_words" in columns:
|
| 192 |
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
| 193 |
-
display_dataset(
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
if "special_characters_ratio" in columns:
|
| 196 |
-
cond_filter = np.invert(
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
if "stopwords_ratio" in columns:
|
| 200 |
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
| 201 |
-
display_dataset(
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
if "badwords_ratio" in columns:
|
| 204 |
cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0))
|
| 205 |
-
display_dataset(
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
if "lang_id_score" in columns:
|
| 208 |
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
| 209 |
-
display_dataset(
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
if "perplexity_score" in columns:
|
| 212 |
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
| 213 |
-
display_dataset(
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
display_dataset(all_conds, "Retained documents")
|
| 216 |
|
| 217 |
def filtering_of_words(self):
|
| 218 |
-
|
|
|
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
|
| 224 |
-
cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word)
|
| 225 |
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
|
| 234 |
-
|
| 235 |
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
|
| 259 |
def plot_distributions_filtering_parameters(self):
|
| 260 |
st.header("Distributions of the filtering parameters")
|
|
@@ -276,27 +315,29 @@ class Visualization:
|
|
| 276 |
for key in list({el[0]: None for el in self.keys}):
|
| 277 |
plot_hist(self.docs, key)
|
| 278 |
|
| 279 |
-
|
|
|
|
| 280 |
|
| 281 |
def plot_zipf_law(self):
|
| 282 |
-
|
|
|
|
| 283 |
|
| 284 |
-
|
| 285 |
|
| 286 |
-
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
|
| 301 |
def download_data(self):
|
| 302 |
st.header("Download data")
|
|
@@ -320,13 +361,18 @@ class Visualization:
|
|
| 320 |
|
| 321 |
|
| 322 |
path_instructions = "./filtering_pipeline_oscar.pdf"
|
| 323 |
-
path_data = "./
|
| 324 |
-
lang = "
|
| 325 |
num_docs = 5000
|
| 326 |
num_docs_for_words = 500
|
| 327 |
max_len_text_display = 10000
|
| 328 |
|
| 329 |
visualization = Visualization(
|
| 330 |
-
path_instructions,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
)
|
| 332 |
visualization.visualization()
|
|
|
|
| 15 |
|
| 16 |
class Visualization:
|
| 17 |
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
path_instructions,
|
| 20 |
+
path_data,
|
| 21 |
+
lang,
|
| 22 |
+
num_docs,
|
| 23 |
+
num_docs_for_words,
|
| 24 |
+
max_len_text_display,
|
| 25 |
):
|
| 26 |
self.path_instructions = path_instructions
|
| 27 |
self.path_data = path_data
|
|
|
|
| 31 |
self.max_len_text_display = max_len_text_display
|
| 32 |
|
| 33 |
def preamble(self):
|
| 34 |
+
st.markdown(
|
| 35 |
+
"Before diving into this demo, you might want to take a look at how the filtering pipeline of OSCAR looks like in more detail."
|
| 36 |
+
)
|
| 37 |
|
| 38 |
+
def get_binary_file_downloader_html(bin_file, file_label="File"):
|
| 39 |
+
with open(bin_file, "rb") as f:
|
| 40 |
data = f.read()
|
| 41 |
bin_str = base64.b64encode(data).decode()
|
| 42 |
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
| 43 |
return href
|
| 44 |
|
| 45 |
+
st.markdown(
|
| 46 |
+
get_binary_file_downloader_html(
|
| 47 |
+
self.path_instructions,
|
| 48 |
+
"Download the filtering pipeline of OSCAR as pdf",
|
| 49 |
+
),
|
| 50 |
+
unsafe_allow_html=True,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
def open_data(self):
|
| 54 |
with open(self.path_data) as json_file:
|
| 55 |
data = json.load(json_file)
|
|
|
|
| 57 |
self.num_docs = min(self.num_docs, len(data))
|
| 58 |
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
|
| 59 |
|
| 60 |
+
if "words" in data[0]:
|
| 61 |
+
words = [doc["words"] for doc in data[: self.num_docs_for_words]]
|
| 62 |
+
words = [word for doc in words for word in doc]
|
| 63 |
+
self.words = pd.DataFrame(words)
|
| 64 |
+
else:
|
| 65 |
+
self.words = None
|
| 66 |
|
| 67 |
docs = data[: self.num_docs]
|
| 68 |
for doc in docs:
|
| 69 |
+
if not (self.words is None):
|
| 70 |
+
del doc["words"]
|
| 71 |
if len(doc["text"]) > self.max_len_text_display:
|
| 72 |
doc["text"] = (
|
| 73 |
doc["text"][: self.max_len_text_display]
|
|
|
|
| 197 |
"Click on a column to sort by it, place the cursor on the text to display it."
|
| 198 |
)
|
| 199 |
st.dataframe(displayed_docs)
|
| 200 |
+
|
| 201 |
display_dataset(np.invert(all_conds), "Discarded documents")
|
| 202 |
|
| 203 |
+
# st.subheader("Display discarded documents by filter")
|
| 204 |
+
display_discarded_documents_by_filter = st.checkbox(
|
| 205 |
+
"Display discarded documents by filter"
|
| 206 |
+
)
|
| 207 |
|
| 208 |
if display_discarded_documents_by_filter:
|
| 209 |
columns = list(self.docs)
|
| 210 |
|
| 211 |
if "number_words" in columns:
|
| 212 |
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
| 213 |
+
display_dataset(
|
| 214 |
+
cond_filter,
|
| 215 |
+
"Discarded documents for the filter on the number of words",
|
| 216 |
+
)
|
| 217 |
|
| 218 |
if "special_characters_ratio" in columns:
|
| 219 |
+
cond_filter = np.invert(
|
| 220 |
+
np.all(conds["special_characters_ratio"], axis=0)
|
| 221 |
+
)
|
| 222 |
+
display_dataset(
|
| 223 |
+
cond_filter,
|
| 224 |
+
"Discarded documents for the filter on the special characters ratio",
|
| 225 |
+
)
|
| 226 |
|
| 227 |
if "stopwords_ratio" in columns:
|
| 228 |
cond_filter = np.invert(np.all(conds["stopwords_ratio"], axis=0))
|
| 229 |
+
display_dataset(
|
| 230 |
+
cond_filter,
|
| 231 |
+
"Discarded documents for the filter on the stop words ratio",
|
| 232 |
+
)
|
| 233 |
|
| 234 |
if "badwords_ratio" in columns:
|
| 235 |
cond_filter = np.invert(np.all(conds["badwords_ratio"], axis=0))
|
| 236 |
+
display_dataset(
|
| 237 |
+
cond_filter,
|
| 238 |
+
"Discarded documents for the filter on the bad words ratio",
|
| 239 |
+
)
|
| 240 |
|
| 241 |
if "lang_id_score" in columns:
|
| 242 |
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
| 243 |
+
display_dataset(
|
| 244 |
+
cond_filter,
|
| 245 |
+
"Discarded documents for the filter on the language identification confidence score",
|
| 246 |
+
)
|
| 247 |
|
| 248 |
if "perplexity_score" in columns:
|
| 249 |
cond_filter = np.invert(np.all(conds["perplexity_score"], axis=0))
|
| 250 |
+
display_dataset(
|
| 251 |
+
cond_filter,
|
| 252 |
+
"Discarded documents for the filter on the perplexity score",
|
| 253 |
+
)
|
| 254 |
|
| 255 |
display_dataset(all_conds, "Retained documents")
|
| 256 |
|
| 257 |
def filtering_of_words(self):
|
| 258 |
+
if not (self.words is None):
|
| 259 |
+
st.sidebar.subheader("Parameter of the filtering on words")
|
| 260 |
|
| 261 |
+
cutoff_def = "If the length of a word is higher than this number, the word is removed."
|
| 262 |
+
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
|
| 263 |
+
cutoff_word = st.sidebar.slider(cutoff_def, 0, max_len_word, max_len_word)
|
|
|
|
|
|
|
| 264 |
|
| 265 |
+
incorrect_substrings = st.sidebar.checkbox(
|
| 266 |
+
"Remove words with incorrect substrings."
|
| 267 |
+
)
|
| 268 |
|
| 269 |
+
cond_words = self.words["len_word"] <= cutoff_word
|
| 270 |
+
if incorrect_substrings:
|
| 271 |
+
cond_words = cond_words & np.invert(self.words["incorrect_substring"])
|
| 272 |
|
| 273 |
+
st.header("Filtering on words")
|
| 274 |
|
| 275 |
+
st.markdown(
|
| 276 |
+
f"Since the number of words is way larger than the number of documents, "
|
| 277 |
+
f"we consider in this section words for the first {self.num_docs_for_words} documents only."
|
| 278 |
+
)
|
| 279 |
|
| 280 |
+
discarded_words = self.words.loc[np.invert(cond_words)]
|
| 281 |
+
st.subheader(
|
| 282 |
+
f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)"
|
| 283 |
+
)
|
| 284 |
+
st.markdown(
|
| 285 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
| 286 |
+
)
|
| 287 |
+
st.dataframe(discarded_words)
|
| 288 |
|
| 289 |
+
retained_words = self.words.loc[cond_words]
|
| 290 |
+
st.subheader(
|
| 291 |
+
f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)"
|
| 292 |
+
)
|
| 293 |
+
st.markdown(
|
| 294 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
| 295 |
+
)
|
| 296 |
+
st.dataframe(retained_words)
|
| 297 |
|
| 298 |
def plot_distributions_filtering_parameters(self):
|
| 299 |
st.header("Distributions of the filtering parameters")
|
|
|
|
| 315 |
for key in list({el[0]: None for el in self.keys}):
|
| 316 |
plot_hist(self.docs, key)
|
| 317 |
|
| 318 |
+
if not (self.words is None):
|
| 319 |
+
plot_hist(self.words, "len_word")
|
| 320 |
|
| 321 |
def plot_zipf_law(self):
|
| 322 |
+
if not (self.words is None):
|
| 323 |
+
st.header("Zipf's Law")
|
| 324 |
|
| 325 |
+
display_zipf_law = st.checkbox("Display Zipf's Law")
|
| 326 |
|
| 327 |
+
if display_zipf_law:
|
| 328 |
|
| 329 |
+
freq_words = {}
|
| 330 |
+
for _, row in self.words.iterrows():
|
| 331 |
+
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
|
| 332 |
+
freq_words = np.array(list(freq_words.values()))
|
| 333 |
+
freq_words = -np.sort(-freq_words)
|
| 334 |
|
| 335 |
+
fig, ax = plt.subplots()
|
| 336 |
+
ax.loglog(freq_words)
|
| 337 |
+
ax.set_title("Zipf's Law")
|
| 338 |
+
ax.set_xlabel("$i$-th most frequent word")
|
| 339 |
+
ax.set_ylabel("frequency in the documents")
|
| 340 |
+
st.pyplot(fig)
|
| 341 |
|
| 342 |
def download_data(self):
|
| 343 |
st.header("Download data")
|
|
|
|
| 361 |
|
| 362 |
|
| 363 |
path_instructions = "./filtering_pipeline_oscar.pdf"
|
| 364 |
+
path_data = "./zh_examples_with_stats.json"
|
| 365 |
+
lang = "Chinese"
|
| 366 |
num_docs = 5000
|
| 367 |
num_docs_for_words = 500
|
| 368 |
max_len_text_display = 10000
|
| 369 |
|
| 370 |
visualization = Visualization(
|
| 371 |
+
path_instructions,
|
| 372 |
+
path_data,
|
| 373 |
+
lang,
|
| 374 |
+
num_docs,
|
| 375 |
+
num_docs_for_words,
|
| 376 |
+
max_len_text_display,
|
| 377 |
)
|
| 378 |
visualization.visualization()
|
en_examples_with_stats.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f2325873414309a7ea67d2753202207a2773319dc40f338c0a0fc7bb703463a6
|
| 3 |
+
size 713107133
|
zh_examples_with_stats.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:438a5bb757c23581784946f345a99ab11b77c43f57a3cbf18148c197ec4ef741
|
| 3 |
+
size 193517532
|