Spaces:
Runtime error
Runtime error
Commit
·
061d2e4
1
Parent(s):
4809033
add register information
Browse files- app.py +129 -92
- en_examples_with_stats.json +2 -2
- zh_examples_with_stats.json +2 -2
app.py
CHANGED
@@ -120,8 +120,6 @@ class Visualization_for_lang:
|
|
120 |
st.dataframe(displayed_examples)
|
121 |
|
122 |
def filtering_of_docs(self):
|
123 |
-
st.sidebar.subheader("Parameters of the filtering on documents")
|
124 |
-
|
125 |
def set_sliders():
|
126 |
columns = list(self.docs)
|
127 |
keys = []
|
@@ -377,12 +375,6 @@ class Visualization_for_lang:
|
|
377 |
|
378 |
return keys, conds
|
379 |
|
380 |
-
self.keys, conds = set_sliders()
|
381 |
-
self.parameters = self.keys * 1
|
382 |
-
|
383 |
-
all_conds = [subcond for cond in list(conds.values()) for subcond in cond]
|
384 |
-
all_conds = np.all(all_conds, axis=0)
|
385 |
-
|
386 |
with st.expander(
|
387 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
388 |
):
|
@@ -390,101 +382,146 @@ class Visualization_for_lang:
|
|
390 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
391 |
)
|
392 |
|
393 |
-
|
394 |
-
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
|
|
|
|
401 |
|
402 |
-
|
403 |
-
|
|
|
|
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
cond_filter,
|
410 |
-
"Discarded documents for the filter on the number of words",
|
411 |
-
"docs",
|
412 |
-
)
|
413 |
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
)
|
418 |
-
Visualization_for_lang.display_dataset(
|
419 |
-
self.docs,
|
420 |
-
cond_filter,
|
421 |
-
"Discarded documents for the filter on the character repetition ratio",
|
422 |
-
"docs",
|
423 |
-
)
|
424 |
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
Visualization_for_lang.display_dataset(
|
430 |
-
self.docs,
|
431 |
-
cond_filter,
|
432 |
-
"Discarded documents for the filter on the word repetition ratio",
|
433 |
-
"docs",
|
434 |
-
)
|
435 |
|
436 |
-
if
|
437 |
-
|
438 |
-
np.all(conds["special_characters_ratio"], axis=0)
|
439 |
-
)
|
440 |
-
Visualization_for_lang.display_dataset(
|
441 |
-
self.docs,
|
442 |
-
cond_filter,
|
443 |
-
"Discarded documents for the filter on the special characters ratio",
|
444 |
-
"docs",
|
445 |
-
)
|
446 |
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
|
|
|
|
475 |
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
|
|
|
|
484 |
|
485 |
-
|
486 |
-
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
489 |
st.header("Download data")
|
490 |
|
|
|
120 |
st.dataframe(displayed_examples)
|
121 |
|
122 |
def filtering_of_docs(self):
|
|
|
|
|
123 |
def set_sliders():
|
124 |
columns = list(self.docs)
|
125 |
keys = []
|
|
|
375 |
|
376 |
return keys, conds
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
with st.expander(
|
379 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
380 |
):
|
|
|
382 |
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
383 |
)
|
384 |
|
385 |
+
if "labels" in list(self.docs):
|
386 |
+
chosen_label = st.selectbox(
|
387 |
+
label="Consider only documents that include the following label",
|
388 |
+
options=[
|
389 |
+
"All",
|
390 |
+
"NA: Narrative",
|
391 |
+
"IN: Informational Description",
|
392 |
+
"OP: Opinion",
|
393 |
+
"ID: Interactive Discussion",
|
394 |
+
"HI: How-to/Instruction",
|
395 |
+
"IP: Informational Persuasion",
|
396 |
+
"LY: Lyrical",
|
397 |
+
"SP: Spoken",
|
398 |
+
],
|
399 |
+
)
|
400 |
+
chosen_label = chosen_label.split(":")[0]
|
401 |
+
if chosen_label != "All":
|
402 |
+
cond_label = list(
|
403 |
+
self.docs["labels"].apply(
|
404 |
+
lambda x: True if chosen_label in x else False
|
405 |
+
)
|
406 |
+
)
|
407 |
+
self.docs = self.docs[cond_label]
|
408 |
|
409 |
+
if self.docs.empty:
|
410 |
+
st.markdown(
|
411 |
+
"No document to display, please try to select a different label."
|
412 |
+
)
|
413 |
+
self.keys = []
|
414 |
+
self.parameters = []
|
415 |
|
416 |
+
else:
|
417 |
+
st.sidebar.subheader("Parameters of the filtering on documents")
|
418 |
+
self.keys, conds = set_sliders()
|
419 |
+
self.parameters = self.keys * 1
|
420 |
|
421 |
+
all_conds = [
|
422 |
+
subcond for cond in list(conds.values()) for subcond in cond
|
423 |
+
]
|
424 |
+
all_conds = np.all(all_conds, axis=0)
|
|
|
|
|
|
|
|
|
425 |
|
426 |
+
Visualization_for_lang.display_dataset(
|
427 |
+
self.docs, np.invert(all_conds), "Discarded documents", "docs"
|
428 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
|
430 |
+
# st.subheader("Display discarded documents by filter")
|
431 |
+
display_discarded_documents_by_filter = st.checkbox(
|
432 |
+
"Display discarded documents by filter"
|
433 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
+
if display_discarded_documents_by_filter:
|
436 |
+
columns = list(self.docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
|
438 |
+
if "number_words" in columns:
|
439 |
+
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
440 |
+
Visualization_for_lang.display_dataset(
|
441 |
+
self.docs,
|
442 |
+
cond_filter,
|
443 |
+
"Discarded documents for the filter on the number of words",
|
444 |
+
"docs",
|
445 |
+
)
|
446 |
|
447 |
+
if "character_repetition_ratio" in columns:
|
448 |
+
cond_filter = np.invert(
|
449 |
+
np.all(conds["character_repetition_ratio"], axis=0)
|
450 |
+
)
|
451 |
+
Visualization_for_lang.display_dataset(
|
452 |
+
self.docs,
|
453 |
+
cond_filter,
|
454 |
+
"Discarded documents for the filter on the character repetition ratio",
|
455 |
+
"docs",
|
456 |
+
)
|
457 |
|
458 |
+
if "word_repetition_ratio" in columns:
|
459 |
+
cond_filter = np.invert(
|
460 |
+
np.all(conds["word_repetition_ratio"], axis=0)
|
461 |
+
)
|
462 |
+
Visualization_for_lang.display_dataset(
|
463 |
+
self.docs,
|
464 |
+
cond_filter,
|
465 |
+
"Discarded documents for the filter on the word repetition ratio",
|
466 |
+
"docs",
|
467 |
+
)
|
468 |
|
469 |
+
if "special_characters_ratio" in columns:
|
470 |
+
cond_filter = np.invert(
|
471 |
+
np.all(conds["special_characters_ratio"], axis=0)
|
472 |
+
)
|
473 |
+
Visualization_for_lang.display_dataset(
|
474 |
+
self.docs,
|
475 |
+
cond_filter,
|
476 |
+
"Discarded documents for the filter on the special characters ratio",
|
477 |
+
"docs",
|
478 |
+
)
|
479 |
|
480 |
+
if "stopwords_ratio" in columns:
|
481 |
+
cond_filter = np.invert(
|
482 |
+
np.all(conds["stopwords_ratio"], axis=0)
|
483 |
+
)
|
484 |
+
Visualization_for_lang.display_dataset(
|
485 |
+
self.docs,
|
486 |
+
cond_filter,
|
487 |
+
"Discarded documents for the filter on the stop words ratio",
|
488 |
+
"docs",
|
489 |
+
)
|
490 |
+
|
491 |
+
if "flagged_words_ratio" in columns:
|
492 |
+
cond_filter = np.invert(
|
493 |
+
np.all(conds["flagged_words_ratio"], axis=0)
|
494 |
+
)
|
495 |
+
Visualization_for_lang.display_dataset(
|
496 |
+
self.docs,
|
497 |
+
cond_filter,
|
498 |
+
"Discarded documents for the filter on the flagged words ratio",
|
499 |
+
"docs",
|
500 |
+
)
|
501 |
+
|
502 |
+
if "lang_id_score" in columns:
|
503 |
+
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
504 |
+
Visualization_for_lang.display_dataset(
|
505 |
+
self.docs,
|
506 |
+
cond_filter,
|
507 |
+
"Discarded documents for the filter on the language identification confidence score",
|
508 |
+
"docs",
|
509 |
+
)
|
510 |
+
|
511 |
+
if "perplexity_score" in columns:
|
512 |
+
cond_filter = np.invert(
|
513 |
+
np.all(conds["perplexity_score"], axis=0)
|
514 |
+
)
|
515 |
+
Visualization_for_lang.display_dataset(
|
516 |
+
self.docs,
|
517 |
+
cond_filter,
|
518 |
+
"Discarded documents for the filter on the perplexity score",
|
519 |
+
"docs",
|
520 |
+
)
|
521 |
+
|
522 |
+
Visualization_for_lang.display_dataset(
|
523 |
+
self.docs, all_conds, "Retained documents", "docs"
|
524 |
+
)
|
525 |
|
526 |
st.header("Download data")
|
527 |
|
en_examples_with_stats.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd798b2bc010480cf0777b41bac9dfde2ab1c0ba17e151400b9e1359aa1a114c
|
3 |
+
size 276101032
|
zh_examples_with_stats.json
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8b02e485e2736cc5e407a567adcb09d228ce0e2eb6ed7609749e77028446175
|
3 |
+
size 74914733
|