teven's picture
better description, flagged words
c8f45af
raw
history blame
5.48 kB
import streamlit as st
import json
import pandas as pd
import math
import numpy as np
import matplotlib.pyplot as plt
def visualization(path_data, lang, num_docs, num_docs_for_words):
with open(path_data) as json_file:
data = json.load(json_file)
num_docs = min(num_docs, len(data))
st.title(f"{num_docs} {lang} documents from Oscar with their stats.")
sentences = [doc["text"].split(" ") for doc in data[:num_docs_for_words]]
words = set([word for sentence in sentences for word in sentence])
words_data = [{"len_word": len(word), "word": word} for word in words]
words_data = pd.DataFrame(words_data)
data = data[:num_docs]
data = pd.DataFrame(data)
columns = list(data)
keys = []
values = {}
st.header("Filtering based on document content")
if "special_%" in columns:
special_ratio = st.sidebar.slider(
"% filtered by special characters ratio", 0.0, 50.0, 0.0, step=0.1
)
cutoff_index = max(0, math.floor((100 - special_ratio) * len(data.index) / 100) - 1)
special_cutoff = np.partition(data["special_%"], cutoff_index)[cutoff_index]
st.sidebar.text(f"No docs with <{special_cutoff:.1f}% special chars")
keys.append(("special_%", special_cutoff, True))
if "stop_%" in columns:
stop_ratio = st.sidebar.slider(
"% filtered by stop word ratio", 0.0, 50.0, 0.0, step=0.1
)
cutoff_index = max(0, math.floor(stop_ratio * len(data.index) / 100) - 1)
stop_cutoff = np.partition(data["stop_%"], cutoff_index)[cutoff_index]
st.sidebar.text(f"No docs with >{stop_cutoff:.2f}% stop words")
keys.append(("stop_%", stop_cutoff, False))
@st.cache(suppress_st_warning=True)
def recalculate_flagged_words(file):
def flagged_word_ratio(text: str, flagged_word_list):
return len([word for word in text.split() if word.lower().strip() in flagged_word_list]) / len(text.split())
flagged_word_list = [word.decode().strip() for word in file.readlines()]
flagged_word_ratios = [flagged_word_ratio(text, flagged_word_list) * 100 for text in data["text"]]
data["flagged_%"] = flagged_word_ratios
flagged_word_file = st.sidebar.file_uploader("Upload your own list of flagged words (1 word per line)")
if "flagged_%" in columns:
flagged_ratio = st.sidebar.slider(
"% filtered by flaggedwords ratio", 0.0, 50.0, 0.0, step=0.1
)
flagged_index = max(0, math.floor((100 - flagged_ratio) * len(data.index) / 100) - 1)
flagged_cutoff = np.partition(data["flagged_%"], flagged_index)[flagged_index]
st.sidebar.text(f"No docs with >{flagged_cutoff:.2f}% flagged words")
keys.append(("flagged_%", flagged_cutoff, True))
if "perplexity" in columns:
ppl_ratio = st.sidebar.slider(
"% filtered by perplexity", 0.0, 50.0, 0.0, step=0.1
)
ppl_index = max(0, math.floor((100 - ppl_ratio) * len(data.index) / 100) - 1)
ppl_cutoff = np.partition(data["perplexity"], ppl_index)[ppl_index]
st.sidebar.text(f"No docs with >{ppl_cutoff:.0f} perplexity")
keys.append(("perplexity", ppl_cutoff, True))
cond = [
(data[key] <= cutoff) if max_cutoff else (data[key] >= cutoff)
for key, cutoff, max_cutoff in keys
]
cond = np.all(cond, axis=0)
data_not_keep = data.loc[np.invert(cond)]
st.subheader(f"Filtered data: {np.invert(cond).sum()} docs")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(data_not_keep)
data_keep = data.loc[cond]
st.subheader(f"Kept data: {cond.sum()} docs")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(data_keep)
# def plot_hist(dataframe, key, num_bins=50):
# st.subheader(" ".join(key.split("_")))
# hist_values = dataframe[key].values
# max_range = np.max(hist_values)
# hist_values = np.histogram(hist_values, bins=num_bins, range=(0, max_range))[0]
# st.bar_chart(hist_values)
# st.markdown(f"Each bin is of size: {max_range/num_bins}.")
# for key, _, _ in keys:
# plot_hist(data, key)
st.header("Filtering links and concatenated words")
max_len_word = int(np.max(words_data["len_word"])) + 1
cutoff_word = st.sidebar.slider("Word length cutoff", 0, max_len_word, max_len_word)
cond_words = words_data["len_word"] <= cutoff_word
words_keep = words_data.loc[cond_words]
st.subheader(f"Words that we keep (for {num_docs_for_words} documents)")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(words_keep)
words_not_keep = words_data.loc[np.invert(cond_words)]
st.subheader(f"Words that are thrown away (for {num_docs_for_words} documents)")
st.markdown("Click on a column to sort by it, place the cursor on the text to display it.")
st.dataframe(words_not_keep)
st.header("Download data")
with open(path_data) as json_file:
btn = st.download_button(
label="Download data as json",
data=json_file,
file_name="data.json",
)
path_data = "./en_examples_with_stats_ldnoob.json"
lang = "English"
num_docs = 5000
num_docs_for_words = 500
visualization(path_data, lang, num_docs, num_docs_for_words)