Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # Run with: streamlit run visualization.py | |
| import streamlit as st | |
| import json | |
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| class Visualization: | |
| def __init__( | |
| self, path_data, lang, num_docs, num_docs_for_words, max_len_text_display | |
| ): | |
| self.path_data = path_data | |
| self.lang = lang | |
| self.num_docs = num_docs | |
| self.num_docs_for_words = num_docs_for_words | |
| self.max_len_text_display = max_len_text_display | |
| def open_data(self): | |
| with open(self.path_data) as json_file: | |
| data = json.load(json_file) | |
| self.num_docs = min(self.num_docs, len(data)) | |
| self.num_docs_for_words = min(self.num_docs_for_words, len(data)) | |
| words = [doc["words"] for doc in data[: self.num_docs_for_words]] | |
| words = [word for doc in words for word in doc] | |
| self.words = pd.DataFrame(words) | |
| docs = data[: self.num_docs] | |
| for doc in docs: | |
| del doc["words"] | |
| if len(doc["text"]) > self.max_len_text_display: | |
| doc["text"] = ( | |
| doc["text"][: self.max_len_text_display] | |
| + " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]" | |
| ) | |
| self.docs = pd.DataFrame(docs) | |
| def set_title(self): | |
| st.title(f"{self.num_docs} {self.lang} documents from Oscar with their stats.") | |
| def filtering_of_docs(self): | |
| st.sidebar.subheader("Parameters of the filtering on documents") | |
| def set_sliders(docs): | |
| columns = list(docs) | |
| keys = [] | |
| conds = [] | |
| def get_cond(key, cutoff, max_cutoff): | |
| if max_cutoff: | |
| return self.docs[key] <= cutoff | |
| return self.docs[key] >= cutoff | |
| def print_discared_by_cond(cond): | |
| st.sidebar.caption( | |
| f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter" | |
| ) | |
| st.sidebar.caption("---------") | |
| if "number_words" in columns: | |
| max_nb_words = int(np.max(docs["number_words"])) + 1 | |
| cutoff_min_number_words = st.sidebar.slider( | |
| "Min cutoff number words", 0, max_nb_words, 0 | |
| ) | |
| new_key = ("number_words", cutoff_min_number_words, False) | |
| keys.append(new_key) | |
| cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
| conds.append(cond) | |
| print_discared_by_cond(cond) | |
| cutoff_max_number_words = st.sidebar.slider( | |
| "Max cutoff number words", 0, max_nb_words, max_nb_words | |
| ) | |
| new_key = ("number_words", cutoff_max_number_words, True) | |
| keys.append(new_key) | |
| cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
| conds.append(cond) | |
| print_discared_by_cond(cond) | |
| if "special_characters_ratio" in columns: | |
| cutoff_special_characters_ratio = st.sidebar.slider( | |
| "Max cutoff special characters ratio", 0.0, 1.0, 1.0, step=0.01 | |
| ) | |
| new_key = ( | |
| "special_characters_ratio", | |
| cutoff_special_characters_ratio, | |
| True, | |
| ) | |
| keys.append(new_key) | |
| cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
| conds.append(cond) | |
| print_discared_by_cond(cond) | |
| if "stopwords_ratio" in columns: | |
| cutoff_stopwords_ratio = st.sidebar.slider( | |
| "Min cutoff stopwords ratio", 0.0, 1.0, 0.0, step=0.01 | |
| ) | |
| new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False) | |
| keys.append(new_key) | |
| cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
| conds.append(cond) | |
| print_discared_by_cond(cond) | |
| if "badwords_ratio" in columns: | |
| cutoff_badwords_ratio = st.sidebar.slider( | |
| "Max cutoff badwords ratio", 0.0, 1.0, 1.0, step=0.01 | |
| ) | |
| new_key = ("badwords_ratio", cutoff_badwords_ratio, True) | |
| keys.append(new_key) | |
| cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
| conds.append(cond) | |
| print_discared_by_cond(cond) | |
| if "lang_id_score" in columns: | |
| cutoff_lang_id_score = st.sidebar.slider( | |
| "Min cutoff lang id score", 0.0, 1.0, 0.0, step=0.01 | |
| ) | |
| new_key = ("lang_id_score", cutoff_lang_id_score, False) | |
| keys.append(new_key) | |
| cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
| conds.append(cond) | |
| print_discared_by_cond(cond) | |
| if "perplexity_score" in columns: | |
| max_pp = int(np.max(docs["perplexity_score"])) + 1 | |
| cutoff_perplexity_score = st.sidebar.slider( | |
| "Perplexity cutoff perplexity score", 0, max_pp, max_pp | |
| ) | |
| new_key = ("perplexity_score", cutoff_perplexity_score, True) | |
| keys.append(new_key) | |
| cond = get_cond(new_key[0], new_key[1], new_key[2]) | |
| conds.append(cond) | |
| print_discared_by_cond(cond) | |
| return keys, conds | |
| self.keys, conds = set_sliders(self.docs) | |
| conds = np.all(conds, axis=0) | |
| st.header("Filtering on documents") | |
| self.discarded_docs = self.docs.loc[np.invert(conds)] | |
| st.subheader( | |
| f"Discarded documents: {len(self.discarded_docs)} docs ({len(self.discarded_docs) / self.num_docs * 100:.2f}%)" | |
| ) | |
| st.markdown( | |
| "Click on a column to sort by it, place the cursor on the text to display it." | |
| ) | |
| st.dataframe(self.discarded_docs) | |
| self.retained_docs = self.docs.loc[conds] | |
| st.subheader( | |
| f"Retained documents: {len(self.retained_docs)} docs ({len(self.retained_docs) / self.num_docs * 100:.2f}%)" | |
| ) | |
| st.markdown( | |
| "Click on a column to sort by it, place the cursor on the text to display it." | |
| ) | |
| st.dataframe(self.retained_docs) | |
| def filtering_of_words(self): | |
| st.sidebar.subheader("Parameter of the filtering on words") | |
| max_len_word = int(np.max(self.words["len_word"])) + 1 | |
| cutoff_word = st.sidebar.slider( | |
| "Max cutoff length word", 0, max_len_word, max_len_word | |
| ) | |
| incorrect_substrings = st.sidebar.checkbox( | |
| "Remove words with incorrect substrings" | |
| ) | |
| cond_words = self.words["len_word"] <= cutoff_word | |
| if incorrect_substrings: | |
| cond_words = cond_words & np.invert(self.words["incorrect_substring"]) | |
| st.header("Filtering on words") | |
| st.markdown( | |
| f"Since the number of words is way larger than the number of documents, " | |
| f"we consider in this section words for the first {self.num_docs_for_words} documents only." | |
| ) | |
| discarded_words = self.words.loc[np.invert(cond_words)] | |
| st.subheader( | |
| f"Discarded words: {len(discarded_words)} words ({len(discarded_words) / len(self.words) * 100:.2f}%)" | |
| ) | |
| st.markdown( | |
| "Click on a column to sort by it, place the cursor on the text to display it." | |
| ) | |
| st.dataframe(discarded_words) | |
| retained_words = self.words.loc[cond_words] | |
| st.subheader( | |
| f"Retained words: {len(retained_words)} words ({len(retained_words) / len(self.words) * 100:.2f}%)" | |
| ) | |
| st.markdown( | |
| "Click on a column to sort by it, place the cursor on the text to display it." | |
| ) | |
| st.dataframe(retained_words) | |
| def plot_distributions_filtering_parameters(self): | |
| st.header("Distributions of the filtering parameters") | |
| display_distributions = st.checkbox("Display distributions") | |
| if display_distributions: | |
| def plot_hist(dataframe, key, num_bins=50): | |
| st.subheader(" ".join(key.split("_"))) | |
| hist_values = dataframe[key].values | |
| max_range = np.max(hist_values) | |
| hist_values = np.histogram( | |
| hist_values, bins=num_bins, range=(0, max_range) | |
| )[0] | |
| st.bar_chart(hist_values) | |
| st.markdown(f"Each bin is of size: {max_range/num_bins}.") | |
| for key in list({el[0]: None for el in self.keys}): | |
| plot_hist(self.docs, key) | |
| plot_hist(self.words, "len_word") | |
| def plot_zipf_law(self): | |
| st.header("Zipf's Law") | |
| display_zipf_law = st.checkbox("Display Zipf's Law") | |
| if display_zipf_law: | |
| freq_words = {} | |
| for _, row in self.words.iterrows(): | |
| freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1 | |
| freq_words = np.array(list(freq_words.values())) | |
| freq_words = -np.sort(-freq_words) | |
| fig, ax = plt.subplots() | |
| ax.loglog(freq_words) | |
| ax.set_title("Zipf's Law") | |
| ax.set_xlabel("$i$-th most frequent word") | |
| ax.set_ylabel("frequency in the documents") | |
| st.pyplot(fig) | |
| def download_data(self): | |
| st.header("Download data") | |
| with open(self.path_data) as json_file: | |
| btn = st.download_button( | |
| label="Download data as json", | |
| data=json_file, | |
| file_name="data.json", | |
| ) | |
| def visualization(self): | |
| self.open_data() | |
| self.set_title() | |
| self.filtering_of_docs() | |
| self.filtering_of_words() | |
| self.plot_distributions_filtering_parameters() | |
| self.plot_zipf_law() | |
| self.download_data() | |
| path_data = "./en_examples_with_stats.json" | |
| lang = "English" | |
| num_docs = 5000 | |
| num_docs_for_words = 500 | |
| max_len_text_display = 10000 | |
| visualization = Visualization( | |
| path_data, lang, num_docs, num_docs_for_words, max_len_text_display | |
| ) | |
| visualization.visualization() | |

